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Abstract. We present a theoretical investigation of the process of phase
matched direct third harmonic (TH) generation in single quadratic crystal with
periodical change of the sign of the second-order nonlinearity. The phase match-
ing is achieved with quasi phase matching by appropriate choice of the period of
the periodical change of the sign of the crystal second-order nonlinearity. The
peculiarity in our case is that the phase matched direct TH radiation is gener-
ated as a result of the cascading of two non phase matched second-order pro-
cesses: (i) second harmonic generation and (ii) frequency mixing of the second
harmonic field and the fundamental field. In contrast to the process of TH gen-
eration in bulk birefringence second-order nonlinear crystals, where the phase
matched TH wave is a sum of the contributions of both intrinsic cubic non-
linearity and cascaded [χ(2) : χ(2)] cubic nonlinearity, in the case considered
here only the cascaded [χ(2) : χ(2)] cubic nonlinearity contributes to the phase
matched TH signal. The developed model enables the optimization of the de-
sign parameters (period, duty factor) of periodically poled quadratic crystals for
efficient TH generation at a given laser wavelength. As an example we analyzed
the direct frequency tripling of 1500 nm radiation in periodically poled LiNbO3

crystal with period 18 μm and found that conversion efficiency up to 25% could
be achieved with moderate pump intensities.

PACS number: 42.79Nv; 42.65Ky; 42.55Xi

1 Introduction

The third harmonic generation (THG) is well known nonlinear process used for
frequency tripling of laser light sources. For best efficiency the process has to
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be phase matched, i.e., the phase velocity of the fundamental wave should be
equal to the phase velocity of the third harmonic wave. The birefringence phase
matched THG governed by the intrinsic cubic nonlinearity χ

(3)
int of the media has

been demonstrated in centrosymmetric crystals [1–4]. This method however is
not suitable for practical applications due to the low conversion efficiency as a
result of the very small magnitude of the involved in the process components
of the tensor χ

(3)
int . Instead, two consecutive second-order nonlinear crystals in

which, the first second-harmonic generation (SHG) and then the sum-frequency
generation (SFG) of the second harmonic (SH) and the fundamental wave (FW)
have been commonly used for efficient frequency tripling. As the processes of
SHG and SFG are performed in two separate crystals both of them can be easily
phase matched. The drawback of two-crystal scheme is that it is not compact
and requires refocusing of the output from the first crystal. More recently it has
been suggested that the processes of SHG and SFG can be simultaneously phase
matched in a single second-order nonlinear crystal and high TH conversion effi-
ciencies have been demonstrated [5-9]. It is important to emphasize that in the
last case the efficiency of the THG process is proportional to the squared effec-
tive cascaded cubic nonlinearity χ

(3)
casc ∝

[
χ(2)χ(2)

]
. If both steps SHG and SFG

are phase matched or even only one of them is phase matched, the cascaded cu-
bic nonlinearity χ

(3)
casc is higher in value than χ

(3)
int by several order of magnitudes

and the generated TH is a result only of the cascaded processes.

Generally, the phase matched cascaded THG can be generated in single
quadratic crystal in four different situations (see, e.g. [10,11]): (a) when only
the process of SHG is phase matched; (b) when only the process of sum fre-
quency mixing (SFM) is phase matched; (c) when both processes are not phase
matched, but the mismatches for both processes SHG and SFM are equal in
magnitude but opposite in sign; and (d) when the two processes SHG and SFM
are phase matched simultaneously. The case (d) offers the most efficient way for
THG in single crystal. The maximum efficiency achieved so far is 20–25% [5-
7]. The drawback of method (d) is the necessity of providing simultaneous phase
matching of the two second-order processes, which is not an easy task [9]. For
this reason the case (c), that we call direct THG process could be a promising al-
ternative for efficient frequency tripling. We use the terminology direct in order
to stress that neither SHG step ω+ω = 2ω, nor SFM step ω+2ω = 3ω is phase
matched, but in the same time the overall process ω + ω + ω = 3ω is phase
patched. To the best of our knowledge this case of direct THG in quadratic
media has been investigated only in bulk homogeneous crystals [12–14]. The
phase matching conditions Δk3 = k3 − 3k1 → 0 (where k3 and k1 are the wave
vectors of the fundamental and the third harmonic waves respectively) were sat-
isfied with utilization of the birefringence and efficiencies up to 6% have been
reported [12]. In a recent paper [15] we have presented what we believe to be
the first experimental demonstration of direct THG in quadratic crystals with pe-
riodical change of χ(2) by frequency tripling of 1.064 μm radiation in PP-LNB
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with period 7 μm. We have shown that in this case the phase matching condition
for direct THG has to be modified to Δk3 = k3 − 3k1 − Gm → 0, where Gm

is one of the reciprocal vectors of the QPM periodic structure. The obtained
efficiency was estimated to be about 10−4% for relatively low input intensity
(below 400 KW/cm2) and for duty factor D = 0.6 and fifth QPM order. Finally
in [15], a simplified analytical model applicable for low conversion efficiencies,
when the depletion of fundamental wave could be neglected, was developed.

The purpose of the present paper is the development of a numerical model that
enables the optimization of the design parameters (period, duty factor) of pe-
riodically poled quadratic crystals for efficient TH generation at a given laser
wavelength. By direct solution of the respective slowly varying envelope equa-
tions we show that using the 4th QPM order one can achieve 25% intensity con-
version from fundamental to third harmonic with a periodically poled-LiNbO3

crystal with period of 18 μm and duty factor 0.5. Furthermore, in part 4 we pro-
pose a way for further improvement of the analytical model published in [15]
that extends its applicability towards higher conversion efficiencies. The results
of our numerical simulations are compared with those of the improved analyti-
cal model and an excellent agreement is observed with intensities for which the
conversion is below 15%.

2 Phase Matching Conditions

First we will calculate the optimal period of sign reversal of the second-order
nonlinearity, necessary for achieving phase matching for direct THG. For taking
advantage of the highest second-order component of LiNbO3 d33 = dzzz , we
chose all three waves: the fundamental one, the second harmonic and the third
harmonic to be polarized along “z” axis. The bulk phase mismatches for the
processes of direct THG, SHG and SFM are Δk3 = k3 − 3k1, Δk1 = k2 − 2k1

and Δk2 = k3 − k2 − k1, respectively. Note that Δk3 = Δk2 + Δk1. As
already mentioned the phase matching for the direct THG could be achieved by
compensation of the bulk phase mismatch with one of the reciprocal wave vec-
tors of the grating created by the periodical change of the sign of the nonlinearity

in the crystal: Δk3 +
2π

Λ
H ≈ 0. Here Λ is the period of the grating and H is an

integer called QPM order. This PM condition can be presented as

Δk3 +
2π

Λ
H =

(
Δk1 +

2π

Λ
m

)
+

(
Δk2 +

2π

Λ
l

)
, (1)

where m and l are integers with m + l = H .

The two terms in RHS of (1) we denote as Δk1,m and Δk2,l. The LHS of (1)
we denote as Δk3,H . The necessary periods of the second-order nonlinearity
sign reversal for achieving phase matched direct third harmonic (i.e. satisfying
Eq. (1)) are shown as a function of the fundamental wavelength in Figure 1a for
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Figure 1. The necessary periods of the second-order nonlinearity sign reversal for achiev-
ing phase matched direct third harmonic (a), and the second harmonic generation co-
herence length (b) as a function of the fundamental wavelength for the first five QPM
orders (H = 1 . . . 5). The vertical lines indicate the design fundamental wavelength
λ1 = 1, 5 μm.

the first five QPM orders (H = 1 . . . 5). They are calculated using Sellmeier
equations [16] according to the formula ΛH = 2πH/Δk3. For fundamental
wavelength 1.5 μm and temperature 80◦C the design periods for the first 5 QPM
orders are ΛH = {4.5; 9; 13.5; 18; 22.5} μm, respectively.

For bulk quadratic crystals the efficiency of the generated direct third harmonic
depends on the effective cubic nonlinearity that has the form [10,11,17]

χ(3)
casc ∝

d
(2)
SHGd

(2)
SFM

Δk1
=

dzzzdzzz

Δk1
, (2)

where we remind that Δk1 = k2−2k1 is the bulk mismatch of the SHG process.
The effective cubic nonlinearity expressed by the coherence length Lcoh,SH =
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π/Δk1 of the SHG process is: χ
(3)
casc ∝ d2

zzzLcoh,SH. The bigger Lcoh,SH, the
stronger cascaded direct TH signal. For QPM nonlinear media for the effective
cubic nonlinearity instead of (2) we will have [15]

χ(3)
casc,m ∝ d

(2)
SHGd

(2)
SFM

Δk1,m
=

(
2

πm
dzzz

) (
2
π l

dzzz

)

Δk1,m
, (3)

where Δk1,m = k2 − 2k1 − 2πm/ΛH as we denoted in (1).

The second-order nonlinearities responsible for the two separate cascading steps

are
2

πm
dzzz for the SHG step and

2
π l

dzzz for the SFM step. We recall that

m and l can be arbitrary integers with the restriction that m + l = H . This
restriction is consequence of the phase matching condition for the direct THG
process: Δk3,H = 0.

In Figure 1b we plot Lcoh,SH = π/|Δk1,1| for m = 1 as a function of the wave-
length for the first five QPM orders H = 1 . . . 5. As can be seen from this figure
for fundamental wavelength λ1 = 1.5 μm 4th order QPM gives the biggest
SH coherence length and therefore we can expect the highest TH efficiency, ex-
ceeding with several orders of magnitude the TH efficiency for the other QPM
orders. Similar calculations for m = 2 and m = 3 give order of magnitudes at
smaller Lcoh,SH, that is why the essential contribution to the process of direct
TH generation is expected from cascading steps with m = 1 and l = 3. Indeed,
the coherence length for the second step SFM is defined as Lcoh,SF = π/|Δk2,l|
(with Δk2,l = k3−k1−k2−2πl/ΛH ) and since Δk2,l = −Δk1,m, in condition
of phase matched direct THG, the SFM process will have the same coherence
length as SHG process and it will be maximized for H = 4 and l = 3. In con-
trast at wavelength λ1 = 1.064 μm the value of H = 5 and {m = 1; l = 4}
gives the longest SH coherence length and the highest TH efficiency compared
with the other QPM orders. It is interesting to notice at this point that the wave-
lengths for which Lcoh,SH ⇒ ∞ in Figure 1b correspond to the points of double
phase matching discussed in the introduction as case (d).

The identification of the steps indices m and l that give the most effective contri-
bution to the process of direct TH generation is important from the point of view
of development of analytical model as it has been done in [15] and for under-
standing the physics of the process. In the numerical analysis described in the
next section the contributions of all possible combinations {m; l} are included.

Summarizing, in this part we have calculated the period of periodical modulation
of the second-order nonlinearity and the QPM order for achieving efficient direct
THG at fundamental wavelength λ1 = 1.5 μm. The obtained for temperature
80◦C of the LiNbO3 crystal period of periodical modulation of the second-order
nonlinearity is ΛH = 18 μm and the QPM order is H = 4. The value of the
period of modulation of the second-order nonlinearity is needed for running the
simulations described in the next section.
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3 Slow Varying Envelope Equations

Starting from Maxwell’s equations, assuming slowly varying amplitude approx-
imation and neglecting the losses for all three waves as well as the possible
effects due to group velocity dispersion, we end up with the coupled amplitude
equations for fundamental, second and third harmonic radiation as follows:

dA1

dx
= −iσ1A

∗
1A2 exp(−iΔk1x) − iσ3A

∗
2A3 exp(−iΔk2x) (4a)

dA2

dx
= −iσ2A

2
1 exp(iΔk1x) − iσ4A

∗
1A3 exp(−iΔk2x) (4b)

dA3

dx
= −iσ5A1A2 exp(iΔk2x) − iγA3

1 exp(iΔk3x), (4c)

where σ1,2 = 2πd0/(λ1n1,2)f(x) and σj = (ωj−2/ω1)[2πd0/λ1nj−2)]f(x)
(j = 3, 4, 5). d0 is the bulk second-order nonlinearity and in our case d0 = dzzz .
The third order coupling coefficient is γ = 6πχ

(3)
zzzz/(8λ1n3). The periodical

function f(x) describes the periodical change of the sign of the nonlinearity with
period, ΛH and duty factor D and is defined as

⎧
⎪⎨

⎪⎩

f(x) = 1 0 < z < ΛHD

f(x) = −1 ΛHD < z < ΛH

f(x + jΛH) = f(x) j = 1, 2, 3, . . .

(5)

In [15] we have shown analytically that for even orders QPM for direct THG the
optimal duty factor is D=0.5 and for odd orders QPM the optimum is D = 0.62.
The direct numerical solution of equations (4) confirmed that for even orders
QPM for direct THG the optimal duty factor is D = 0.5 and for odd orders
QPM the optimum is D=0.62. Therefore, as we have already chosen to work
with H = 4 for direct THG at λ = 1.5 μm in LiNbO3 we will start with
a numerical solution of the system (4) for periodical change of the sign of the
nonlinearity with duty factor D = 0.5. In what follows we are interested to solve
several problems: a) to verify if periodical change of the sign of the second-
order nonlinearity leads to periodical sign change of the effective cascaded cubic
nonlinearity; b) what is the maximum efficiency that can be achieved with the
process of direct THG and c) to verify the area of applicability of the analytical
approach described in [15].

4 Results and Discussion

Intuitively one may expect that periodical poling of the second-order nonlinear-
ity should not lead to phase matched THG since the effective cubic nonlinearity

χ
(3)
casc ∝ dzzzdzzz

Δk1
responsible for this process consists of the product of two
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Figure 2. Calculated third harmonic conversion efficiency in 20 mm long periodically
poled-LiNbO3 with period ΛH = 18 μm, duty factor D = 0.5, and normalized pump
amplitude σA10L = 12 (intensity 30 MW/cm2): (a) as a function of temperature for
fixed input wavelength λ1 = 1.5 μm; (b) as a function of the input wavelength for fixed
temperature T = 80◦C.

third rank tensors 〈dzzzdzzz〉 that could be considered as fourth rank tensor and
it should not change the sign when axis z changes its sign. So it is interesting
to verify if the process of direct THG is phase matched and also if the efficiency
curve has the typical for QPM processes step-like dependence. In Figure 2 the
temperature and wavelength tuned phase matched curves are shown, while in
Figure 3a the efficiency curve for sample length L = 500Λ is presented. The
existence of phase matching with respect to the wavelength and the temperature
and the step-like behaviour of the efficiency curve clearly prove that the effec-
tive cubic nonlinearity changes periodically its sign with respect to axis x. Such
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Figure 3. Calculated third harmonic conversion efficiency in periodically poled LiNbO3

with ΛH = 18 μm: (a) as a function of the number of periods of nonlinearity sign reversal
for fixed duty factor D = 0.5 and fundamental amplitude σA10 = 0.6 mm−1; (b) as a
function of the duty factor D for sample length 20 mm and normalized pump amplitude
σA10L = 12.

step-like behaviour is typical for efficiency curves for second-order processes
[18]. Figure 3b demonstrates that for even order QPM vector (H = 4) used
for phase matching of the direct TH generation the optimal duty factor is really
D = 0.5 as predicted by the analytical model developed in [15].

Another very important question when considering the use of direct TH gen-
eration in quadratic crystals for actual applications is the maximum conversion
efficiency that can be achieved. In Figure 4 we show the intensity conversion as
a function of the input intensity calculated for 10 ps pulses in LiNbO3 crystal.
This numerical test demonstrates that efficiency of THG exceeding 25% can be
achieved with single phase matching condition for quite moderate input inten-
sity. The periodical character of the efficiency as a function of input intensity is
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Figure 4. Calculated third harmonic conversion efficiency in 20 mm long periodically
poled LiNbO3 with period ΛH = 18 μm and duty factor D = 0.5 as a function of the
input intensity.

an indication of collection of nonlinear phase shift by the interacting wave that
leads to destructive interference at certain power levels. In these calculations

for efficiency we took the intensity ratio η(TH) =
n3|A3|2
n1|A1|2 , that can be consid-

ered as energy conversion for rectangular shape in space and time. For Gaussian
shape in space and time and not very big conversions (no depletion for the fun-
damental) the energy conversion is three times less than the intensity conversion
[19].

Finally, we tested the theoretical model presented in [15]. In Figure 5 we com-
pare the numerical solution of system (4) and the approximate analytical solution
from [15] that is supposed to work in non depleted regime only

η
(TH)
nd =

n3|A3|2
n1|A1|2 ≈ n3

n1

(
σ5σ2L

2|A1|3
)2

KD,H

∣
∣
∣
∣
sin(Δk3,HL/2)
(Δk3,HL/2)

∣
∣
∣
∣

2

, (6)

where

KD,H =

∣
∣
∣
∣
∣

∑

m

gmgH−m

Δk1,mL

∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣
∣

4
π2L

∑

m �=H

sin(|m|Dπ) sin(|H − m|Dπ)
|m(H − m)|Δk1,m

∣
∣
∣
∣
∣
∣

2

. (7)

Our aim is to verify the range of applicability of the analytical approach. Indeed,
as can be seen from the figure there is a very good agreement between the numer-
ical and analytical solutions Eqs. (6–7) at efficiencies below 5%, but significant
discrepancy at higher input intensities. The analytical solution, however, can be
corrected for the depletion by introducing here the depletion correction factor
(DCF) applicable to TH generation process. Such kind DCF was proposed for
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Figure 5. Third harmonic conversion efficiency in 20 mm long PP-LiNbO3 with period
ΛH = 18 μm and duty factor D = 0.5 as a function of the normalized input amplitude
as calculated with the numerical model (solid line), analytical model (dashed line) and
corrected analytical model (dotted line).

correction of the process of SHG [20]. To derive the DCF for the case of TH
generation we note that P3 = KP 3

0 and η
(TH)
nd = KP 2

0 . At high conversion into
TH (noting that total power is conserved) the fundamental power responsible for
TH generation has to be reduced by the amount of generated TH power and we
will have η

(TH)
d = KP 2

1 = K(P0 − P3)2. Then we finally obtain the follow-

ing relation between the nondepleted conversion η
(TH)
nd and depleted conversion

η
(TH)
d :

η
(TH)
d =

η
(TH)
nd[

1 + η
(TH)
nd

]2 . (8)

It is clear from Figure 5 that the corrected analytical model with DCF given
by Eq. (8) describes very well the process of THG in single periodically poled
quadratic crystal up to 15% conversion efficiencies. To the best of our knowl-
edge, such a correction factor that accounts for the depletion of third order pro-
cesses has not been proposed in the literature. We are convinced that the pre-
sented here approach for description of direct TH generation in nonlinear media
with periodical change of the sign of quadratic nonlinearity will be a useful de-
sign tool for researchers and engineers.

10



Direct TH Generation in Single Quadratic Crystal in Quasi Phase Matched Regime

5 Conclusions

In conclusion, we theoretically investigated the process of direct third harmonic
generation in QPM quadratic media. It was shown that in periodical structures
with Duty factor 0.5 only even QPM orders can phase match the process of di-
rect third harmonic generation . This is in big contrast to the result for the quasi
phase matching of second-order processes when in periodical structures with
Duty factor 0.5 only odd QPM orders can be used. In addition we show that the
process of direct third harmonic generation can be very efficient. For the case of
periodically poled LiNbO3 and fundamental wavelength 1.5 μm we show that
efficient TH can be generated for input intensities ∼ 100 MW/cm2 that corre-
sponds to pulse energy less than 1 μJ !! if pulse duration is 10 ps and beam
diameter 200 μm. Such parameters are easily accessible. In this way the direct
third harmonic generation with requirement for single phase matching condi-
tion can be very attractive alternative to the schemes that require simultaneously
phase matching of both cascading steps.
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