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How to measure �„3… of a nanoparticle
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Most of the known methods to measure the nonlinear optical properties of materials deal with the bulk prop-
erties, but there are many demanding applications that require those measurements to be done on a single
particle or a single molecule. We report a novel application of nonlinear optics to measure the third-order
nonlinear optical susceptibility of nanoparticles in solutions. By measuring the power of the third harmonic
generated in a diluted solution of nanoparticles, both the size and ��3� can be extracted from a simple set of
measurements. © 2006 Optical Society of America

OCIS codes: 190.3970, 190.4180, 190.4350, 290.5850, 320.7090.
The nonlinear optical properties of nanoparticles
were the subject of extended experimental and theo-
retical investigations during the past decade.1,2

Nano-objects play an important role in biology, chem-
istry, and materials science. For example, viruses can
be considered nanometer-scale particles consisting of
proteins; their sizes determine their ability to resist
disinfectant chemical agents.3 Cellular macromolecu-
lar complexes, which govern most cellular functions,
are typically in the range of several tens of nanom-
eters. Thus precise characterization of these nano-
objects will improve our understanding of their func-
tioning and behavior. Semiconductor nanocrystals is
another area where nonlinear optical and size char-
acterization is important, since nanocrystals exhibit
optical and electronic properties that are dependent
on their sizes.4 Thus a noninvasive and real-time
technique allowing simultaneous determination of
nonlinear susceptibilities and sizes of nanostructures
is necessary.

Most of the work for nonlinear optical characteriza-
tion of quantum dots and metal nanoparticles has
been performed by using third-harmonic generation
(THG),2,5 Z-scan,6 and hyper-Rayleigh scattering
(HRS)7 techniques. The Z-scan technique is a simple
method and can offer information on both the sign
and the magnitude of nonlinearity; however, it is
rather difficult to use it in the case of highly scatter-
ing media. In addition, it is not background free and
is very sensitive to the beam quality.8 Third-order
HRS is quite complicated because it is a third-order
noncoherent process, so it requires very precise align-
ment of the setup and very sensitive detection equip-
ment. Besides, experiments on third-order HRS give
the second hyperpolarizability, but not directly the
third-order nonlinear susceptibility ���3��.

In this Letter we propose and experimentally dem-
onstrate a simple novel method to determine not only
��3� but also the size of spherically shaped nanoscopic
0146-9592/06/101486-3/$15.00 ©
objects by employing a set of simple measurements.
It is known that bulk THG cancels for a focused beam
in materials because of the Gouy phase shift on both
sides of the focus, but it still takes place in the vicin-
ity of interfaces.9 By making three independent mea-
surements of the third-harmonic (TH) signal gener-
ated on air–glass and glass–liquid interfaces and
inside a liquid containing nanoscopic objects (see Fig.
1), we can, assuming the known refractive indices
and the known nonlinear optical susceptibility of the
liquid and glass, derive two quantities by using a re-
cently developed theoretical framework.10–12 To ex-
perimentally verify this method, we apply it to deter-
mine ��3� and the sizes of single fused-silica
nanospheres. The choice is driven by the known prop-
erties of this material.

First, we briefly state the assumptions made to get
the equations used in this paper. We neglect the con-
tribution from air because of the low value of its non-
linear susceptibility compared with that of a typical
liquid (�air

�3� =1.2�10−17 esu, �water
�3� =2.78�10−14 esu,

Ref. 13) and also because of tight focusing conditions
in the experiment. The reflection from the first inter-
face, R��1�, which results in �1−R��1��3 times
smaller TH signal at the second identical interface, is

Fig. 1. (Color online) Schematic of the experimental setup.

A, air; G, glass; S, solution.
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taken into account by introducing a corrective coeffi-
cient, since the reflected wave is not considered.
When the beam waist is located on the second inter-
face, we calculate that the waist at the first interface
is 40 times larger, and therefore we can neglect the
contribution to the TH signal from the first interface.
We also neglect aberrations, assuming that they are
not significant under moderate focusing conditions14

(numerical aperture of lenses used in our experi-

ments does not exceed 0.55). Finally, we assume that

ticle’s diameter. However, the other, stricter limit
a spherical nano-sized object has a radius smaller
than a beam waist radius, confocal parameter, and
coherence length. The fourth-power dependence of
TH on the size of the nanoparticle is obtained assum-
ing the slowly varying envelope approximation
(SVEA) and index-matching environment.11

Then the interface-generated TH power can be de-
scribed in terms of the refractive indices of two media
for both the fundamental and the TH waves and ��3�
of both media:
P3
�2�

P3
�1�

= 1 +
�t1

3/t3���t1
3/t3�n3�

2 �n�/N����m
�3��2�Jm�2 + n3�N3��n�/N��gl

�3��m
�3��JglJm

* + Jgl
* Jm��

��gl
�3��2�Jgl�2N3�

2
, �1�
where P3
�1� and P3

�2� denote the total TH power gener-
ated at the air–glass and glass–solution interfaces,
respectively; t1 and t3 are the transmissions for the
fundamental and the TH waves, respectively,
through the cell’s walls; Jgl and Jm represent the in-
tegrals ��z1

z2�exp�−i�kz� / �1+ i2z /b�2�dz� in the glass
and in the medium (solution), respectively, with the
parameters for the corresponding medium; n and N
are the refractive indices of glass and the solution;
�gl

�3� and �m
�3� are the third-order nonlinear suscepti-

bilities of the cell’s glass and the investigated sub-
stance (in our case, the solution). Each of these inte-
grals can be numerically calculated for a given
geometry. Jgl

* and Jm
* represent complex conjugate

values of the corresponding integrals. By simulta-
neous measurements of the TH signals generated on
two interfaces (Fig. 1), we can exclude the incident
intensity from the equation, which sets the relation-
ship between the optical constants among three me-
dia. Assuming the knowledge of optical constants for
two media (air and glass), and the refractive index of
the solution under study, then ��3� of the solution can
be easily obtained by solving a simple algebraic equa-
tion.

On the other hand, TH power generated from the
Rayleigh particle can be presented in the form12

P3 = 1024
n3

c2n1
3w0

6 ��s − �m�2R4P1
3, �2�

where �s,m=3�2��3�
s,m�x ,y ,z� / ��1n3� are nonlinear op-

tical parameters of the sphere and the medium, re-
spectively; P1 is the power of the incident fundamen-
tal beam; w0 is the radius of the beam waist, and R
the radius of the sphere. There are several ways of
estimating the application limit of Eq. (2). One way is
to use the restrictions imposed by the applicability of
the SVEA,15 i.e., to calculate the size of a particle for
which the backscattered signal becomes comparable
with the one generated in the forward direction. This
approach leads to the low limit of 20 nm for the par-
comes from our experimental arrangement, in which
the forward-generated TH signal has to be collected
by a high-numerical-aperture lens. We estimate that
this setup leads to a minimum particle size of about
100 nm.

Now, we want to determine ��3� of the particles. Let
us first assume that we know the sizes of the spheres.
Then we get the value for the nonlinear susceptibility
of the solution without the nanospheres ��m

�3�� and
with them ��eff

�3�� by using Eq. (1). Finally, the suscep-
tibility of the nanosphere itself, �s

�3�, can be obtained
from the relation16

�eff
�3� = �1 − p��m

�3� + p�s
�3�, �3�

where p is the volume fraction of the spheres in the
solution. We will refer to these measurements as sur-
face measurements. On the other hand, we can find
the nonlinear susceptibility of the nanospheres by
measurement of TH power generated from the
spheres in the bulk of the solution. In this case,
knowing �m

�3� from surface measurements and the
sizes of the spheres specified by the manufacturer, we
can get the sphere’s nonlinear susceptibility by mak-
ing a nonlinear fit to Eq. (2). If the values obtained
from surface and bulk measurements are close, then
the method works properly. Suppose now that we do
not know either the sizes of the spheres or their non-
linear susceptibility; in this case ��3� of the spheres’
material and their sizes can be obtained from the sur-
face and volume TH measurements, respectively.

To test the proposed method we use fused-silica
nanospheres of various diameters and measure the
power dependence of the TH power generated by a
single sphere as a function of its diameter. The
spheres are provided by Banglabs Lab in a dry form.
The available sizes are 0.20, 0.30, 0.55, 0.75, and
1.0 �m and have a typical 10% standard deviation
distribution in size, as specified by the manufacturer.

The schematic of the experimental setup for mea-
surements of ��3� for silica nanospheres is shown in
Fig. 1. A femtosecond Cr:forsterite oscillator with a

26.5 MHz repetition rate (�=1.25 �m, 	=40 fs,
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Pav=300 mW) is used as an excitation source.17 The
laser beam is focused with a high-numerical-aperture
(f=4.5 mm, N.A.=0.55) aspheric lens into a flow-
through fused-silica cell, and the TH signal is col-
lected by another aspheric lens (f=4.5 mm, N.A.
=0.55) and reimaged into the spectrometer with an
attached CCD camera. The configuration with the
flow cell prevents particle trapping and makes the
measurements more precise, since the error of the
measurements scales inversely with the number of
particles passing through the focal volume. Estima-
tions show that, at the concentrations we use (typi-
cally around 108 particles/cm3), one or less than one
particle is located in a focal volume ��10−10 cm3� in
one instance. The linear dependence of the TH signal
on concentration proves that the probability of find-
ing more than one particle in the focal volume in one
instance is indeed low.

Measurements of �m
�3� of the index-matching liquid

without microspheres from the surface (first air–
glass and second glass–solution interface) THG give
a value of �3.19±0.3��10−14 esu. Then the same mea-
surements are done for the solution with nano-
spheres for each size of the sphere. Finally, from Eq.
(3), the value of ��3� for fused silica is obtained for
each sphere’s size. The results are presented in Fig.
2. Performing experiments on THG from Rayleigh
particles in the solution and fitting the theoretical
curve [Eq. (2)] to the experimental points (Fig. 2, in-
set), we get the average value of �2.75±0.27�
�10−14 esu for �s

�3� of fused silica. We clearly see that
our surface and bulk measurements are self-
consistent and agree well with the previously re-
ported data for fused silica. Then we check how the
method works to determine the sizes of particles.

Fig. 2. Third-order nonlinear susceptibility as a function
of a diameter of the spheres. Solid line, value of ��3� for
fused silica from the literature; dashed line, ��3� from vol-
ume measurements; solid rectangle, error of ��3� from vol-
ume measurements. Inset, TH intensity generated by a
single particle in the index-matching liquid as a function of
particle diameter; dashed line, forth-power dependence.
Making a measurement of generated TH signal from
the particle of each size inside the solution and on the
surfaces, we can get the diameters of the particles.
The correspondence of the measured values and the
values specified by the manufacturer was within
10%. Thus, when we do not know either the sizes of
the particles or their ��3�, we can obtain both values
on the basis of three simple measurements.

In summary, we have demonstrated that by mea-
surement of TH at the glass–solution interface and in
the bulk of the solution containing nanospheres one
can determine both particle ��3� and sizes. By normal-
izing the intensity of one signal over another, we
avoid the ambiguity of the intensity determination in
the focal spot of the laser beam. The method is
simple, fast, and does not require a high beam qual-
ity of the laser source. We proved the validity of our
methodology on a solution with fused-silica nanopar-
ticles. Since the nonlinear susceptibility depends on
the structure of the nanosized object, we believe this
method can find applications in monitoring struc-
tural transformations of macromolecules.18

We gratefully acknowledge partial support for this
research by the NSF (ECE grant 9984225 and CTS
grant 0210879-NER) and NIH (grant R21RR16282).
S. M. Saltiel and G. I. Petrov acknowledge NATO’s
support (grant CLG 979419). V. Shcheslavskiy’s
e-mail address is vis@orc.soton.ac.uk.

References

1. J. Zhang, Acc. Chem. Res. 30, 423 (1997).
2. M. A. Van Dijk, M. Lippitz, and M. Orrit, Acc. Chem.

Res. 38, 594 (2005).
3. J. Y. Maillard, Rev. Med. Microbiol. 12, 63 (2001).
4. X. Michalet, F. F. Pinaud, L. Bentolila, J. Tsav, S.

Doose, J. Li, G. Sundaresan, A. Wu, S. Gambhir, and S.
Weiss, Science 307, 538 (2005).

5. S. Sauvage, P. Boukaud, F. Glotin, R. Prazeres, J. M.
Ortega, G. M. Lemaitre, and V. Thierry-Mieg, Phys.
Rev. B 59, 9830 (1999).

6. R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki,
and H. Kuroda, Opt. Commun. 240, 437 (2004).

7. D. V. Petrov, B. S. Santos, G. A. Pereira, and C. D.
Donega, J. Phys. Chem. B 106, 5325 (2003).

8. M. Sheik-Bahae, A. Said, and E. Van Stryland, Opt.
Lett. 14, 955 (1989).

9. T. Tsang, Phys. Rev. A 52, 4116 (1995).
10. R. Barille, L. Canioni, L. Sarger, and G. Rivoire, Phys.

Rev. E 66, 067602 (2002).
11. V. I. Shcheslavskiy, G. I. Petrov, and V. V. Yakovlev,

Appl. Phys. Lett. 82, 3982 (2003).
12. V. I. Shcheslavskiy, S. M. Saltiel, A. Faustov, G. I.

Petrov, and V. V. Yakovlev, J. Opt. Soc. Am. B 22, 2402
(2005).

13. R. Boyd, Nonlinear Optics (Academic, 2003).
14. S. W. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer,

J. Microsc. 169, 169 (1993).
15. Y. R. Shen, The Principles of Nonlinear Optics (Wiley,

1984).
16. D. Stroud and V. Wood, J. Opt. Soc. Am. B 6, 778

(1989).
17. V. I. Shcheslavskiy, V. V. Yakovlev, and A. A. Ivanov,

Opt. Lett. 26, 1999 (2001).
18. V. I. Shcheslavskiy, G. I. Petrov, and V. V. Yakovlev,
Chem. Phys. Lett. 402, 170 (2005).


