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Experimental and theoretical investigation of
generation of a cross-polarized wave by

cascading of two different second-order processes
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A nonlinear optical effect in which a linearly polarized wave propagating in a single quadratic medium is con-
verted into a wave that is cross polarized to the input wave is investigated theoretically and observed experi-
mentally in b-barium borate crystal. It is proved that this effect is a result of cascading of two different
second-order processes. It starts with the generation of an extraordinary second-harmonic wave by type I
interaction and is followed by type II difference-frequency mixing between the second-harmonic wave and the
ordinary fundamental wave. The experiment was performed (a) for phase-matched type I interaction and
non-phase-matched type II interaction and (b) for non-phase-matched type I interaction and phase-matched
type II interaction. The observed generation of a cross-polarized wave is to our knowledge the only cubic ef-
fect whose first manifestation has been observed in quadratic crystal. © 2002 Optical Society of America
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1. INTRODUCTION
Second-order cascading (SOC) can be formally divided in
two groups. The first is conventional SOC, in which the
effect results from cascading of several subprocesses that
belong to a single quadratic process.1–3 For example, ac-
cumulation of a nonlinear phase shift encountered by a
wave at a frequency v associated with type I second-
harmonic generation is the result of the cascading of v
1 v 5 2v and 2v 2 v 5 v subprocesses. This type of
SOC is governed by a single phase-matching parameter
Dk 5 k2 2 2k1 that occurs two times. Because of this
SOC, many cubic effects such as nonlinear phase shift,4

pulse compression,5,6 and soliton propagation7–9 can be
observed in quadratic media at lower pump levels than in
centrosymmetric media.

The second type of SOC, frequently called multistep
second-order cascading, involves two different second-
0740-3224/2002/020268-12$15.00 ©
order processes (TDSOPs), each one of which is character-
ized by its own phase-matching parameter. Like conven-
tional SOC, cascading of TDSOPs also simulates a third-
order process. Investigations and experiments with the
objective of obtaining phase-matched third-harmonic gen-
eration (THG) in a single crystal10–20 exemplify this pos-
sibility. There, THG is the result of cascading of v 1 v
5 2v and 2v 1 v 5 3v processes. Moreover, several
recent investigations predicted that effects based on self-
and cross-phase modulation, like the accumulation of
nonlinear phase shifts21,22 and soliton propagation,23–27

also can be observed with cascading of TDSOPs. In pro-
cesses that deal with cascading of TDSOPs, special atten-
tion has been paid to the case in which the interacting
waves involved concern only two frequencies,22,23,28–32

which is frequently called two-color multistep
cascading.22,23 Another frequency-shifting effect, which
2002 Optical Society of America
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uses more than two frequencies and has important appli-
cations in the optical communications industry, is a result
of cascading from v 1 v 5 2v and 2v 2 va
5 vb . Obtaining such frequency shifting by use of a
single quadratic crystal33–35 is a significant demonstra-
tion of the capability of TDSOP cascading to simulate x (3)

effects with much higher efficiency. In all cases, the cu-
bic effects observed in quadratic media from both types of
cascading reproduce cubic effects that have already been
observed in centrosymmetric media.

The cascade processes described so far involve energy
conversion, nonlinear phase shifts, or both. In this paper
we investigate both theoretically and experimentally an-
other TDSOP cascading effect that deals with polariza-
tion manipulation. It corresponds to the generation of a
cross-polarized wave (XPW). According to our knowledge
this multistep effect (for preliminary experimental results
see Ref. 36) was never observed before. Moreover, we be-
lieve that it is by now the only cubic effect whose first
manifestation has been observed in a quadratic crystal.
In the process of XPW generation, three degenerate lin-
early polarized fields carried by the same beam generate,
through an effective cubic nonlinearity, a new wave at the
same frequency but polarized in the plane perpendicular
to the input wave. The nonlinear interaction that we in-
vestigate is therefore a direct way to generate a XPW.
The basic idea is totally different from that of all known
linear and nonlinear37–42 methods that deal with polar-
ization rotation. As a matter of fact, the known methods
of polarization rotation are based on a succession of sev-
eral steps: splitting of an input beam into two beams in
an anisotropic crystal, manipulation of the phase differ-
ence of the two beams through the birefringence effect (in
linear optical methods) or accumulation of nonlinear
phase shift (in nonlinear optical methods), and subse-
quent interferometric recombination of the split incoming
beams.

In the past, the effect of XPW generation as a result of
anisotropy of the x (3) tensor Dx (3) 5 xxxxx

(3) 2 3xxxyy
(3) and

nonvanishing xxxxy
(3) and xxyyy

(3) was considered in a series of
publications by Zheludev and co-workers (see, e.g., Refs.
43–45). This effect, called by them self-induced elliptic-
ity, together with the effect of nonlinear optical polariza-
tion rotation described by the anisotropy of the Im x(3) and
of high-order gyrotropy tensor g ijklm

(3) , covers the interest-
ing field known as nonlinear optical activity.43 However,
according to our knowledge, the effect of x (3) self-induced
ellipticity has not been observed in volume experiments.

This paper is organized as follows: In Section 2 a sim-
plified analysis of the conditions for nonlinear generation
of a XPW is presented. Section 3 contains a more-
detailed theoretical analysis, with special attention paid
to the cases when at least one of the processes is phase
matched. Section 4 is devoted to the experimental obser-
vation of the generation of a XPW in a b-barium borate
(BBO) crystal and to a discussion of the results.

2. BASIC IDEA
The main idea for the generation of a XPW is sketched in
Fig. 1. The polarization plane of the input wave is tuned
in a way such that in the linear regime only one of the two
allowed eigenwaves, e.g., an ordinary (o) or an extraordi-
nary (e) component, propagates in the quadratic medium.
The overall process used for generating a wave whose po-
larization vector is perpendicular to the polarization vec-
tor of the input wave consists of two steps: second-
harmonic generation (SHG) from two identical
fundamental waves and difference-frequency mixing
(DFM) in which the second harmonic (SH) is downcon-
verted back to the XPW at the fundamental frequency.
To illustrate the principle of generation of a XPW, let us
consider the main processes by which this can be done,
neglecting now all possible depletions of the fundamental
and the SH waves. The plane-wave equations that de-
scribe the effect of XPW generation, for which the terms
that are responsible for possible losses by depletion and
temporal and walk-off effects are neglected, have the fol-
lowing form:

dA

dz
5 0, (1a)

dS

dz
5 2is1A2 exp~iDk1z !, (1b)

dB

dz
5 2is2SA* exp~2iDk2z ! 2 igAAA* exp~2iDk3z !,

(1c)

where S denotes the complex amplitude of the SH wave
and A and B are the complex amplitudes of the two waves
at the fundamental frequency with mutually perpendicu-
lar polarization vectors. Wave A is the input wave, and
wave B is the generated XPW. s1 5 2pdeff,I step /(l1n2),
s2 5 2pdeff,II step /(l1n1), and g 5 6pxeff

(3) /(8l1n1). The
expressions for effective nonlinearities deff,I step , deff,II step ,
and xeff

(3) depend on the class symmetry of the crystal46 and
on the type of process47 used and on the method of phase
matching, e.g., birefringence or quasi-phase matching,
and can be found from application of the following defini-
tions:

deff,I step 5 F 2

pm8
G ^e2x~2 !:e1Ae1A&

2
,

deff,II step 5 F 2

pm9
G ^e2x~2 !:e1Ae1B&

2
,

xeff
~3 ! 5 F 2

pmG ^e1Bx~3 !:e1Ae1Ae1A&.

Fig. 1. Sketch for generation of a XPW based on cascading of
two different second-order processes: NLC, nonlinear crystal.
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The notation in brackets above has to be applied when
quasi-phase matching (QPM) is used, where m is the or-
der of the QPM interaction.

The wave-vector mismatches are defined as Dk1 5 k2
2 2k1A , Dk2 5 k2 2 k1A 2 k1B , and Dk3 5 k1A
2 k1B , where kj are the wave vectors of the waves in-
volved. Note that only two of the wave-vector mis-
matches are independent, because Dk2 2 Dk1 5 Dk3 .
The last term of Eq. (1c) takes into account the contribu-
tion of the direct process of XPW generation that depends
on the inherent cubic susceptibility of the nonlinear me-
dium.

The general solution of Eqs. (1) when S(0) 5 0 and
B(0) 5 0 gives, for wave amplitude B at the output of the
nonlinear medium with thickness L,

B 5 uAu2AH s1s2

Dk1

@exp~2iDk2L ! 2 1#

Dk2

1 gtot

@exp~2iDk3L ! 2 1#

Dk3
J , (2)

where gtot 5 g 2 s1s2 /Dk1 . The value of amplitude B de-
pends strongly on the values of phase mismatch param-
eters Dk1 , Dk2 , and Dk3 . There are four possible situ-
ations in which a noticeable XPW signal can be observed
at the output of the crystal. They correspond to specific
phase-matched conditions: (a) Dk1 ' 0, (b) Dk2 ' 0, (c)
Dk3 ' 0, and (d) simultaneously Dk1 ' 0 and Dk2 ' 0.

For condition (a) the process of SHG, AA → S, is phase
matched (Dk1 ' 0). XPW generation is the result of
cascading from a TDSOP with the first step phase
matched. Taking the limit Dk1 → 0 in Eq. (2) and using
the relation Dk3 5 Dk2 2 Dk1 , we obtain

B~Dk1 ' 0 ! 5 2i
s1s2

Dk2
uAu2AL

sin~Dk1L/2!

~Dk1L/2!

3 exp~iDk1L/2 2 iDk2L ! (3)

As we can see from Eq. (3), the process of XPW genera-
tion is governed by the effective cascade-type coupling co-
efficient gcasc,1 5 s1s2 /Dk2 and indicates that the process
is cubic with respect to the input field.

For condition (b) the process of DFM, SA* → B, is
phase matched (Dk2 ' 0). XPW generation is the result
of cascading from a TDSOP with the second step phase
matched:

B~Dk2 ' 0 ! 5 2i
s1s2

Dk1
uAu2AL

sin~Dk2L/2!

~Dk2L/2!

3 exp~2iDk2L/2!. (4)

The ratio between the intensity of the generated XPW
and the intensity of the non-phase-matched SH wave for
exact phase matching for the second process, Dk2 5 0, is
uB/Su2 5 u s2ALu2. This result is significant only when
u s2ALu ! 1; otherwise, the generated cross-polarized in-
tensity would be bigger than the SH intensity, a demon-
stration that the depletion of the SH wave that is due to
the presence of the XPW has to be included.

In expressions (3) and (4), only the contributions of the
phase-matched processes are included. The direct [x (3)
dependent] non-phase-matched cubic process AAA*
→ B is neglected; we take into account that ug/Dk3u
! u s1s2 /Dk3uL. The proof of this inequality is given in
the description of condition (d) below.
For condition (c) the process AAA* → B is phase
matched (Dk3 ' 0):

B~Dk3 ' 0 ! 5 2igtotuAu2AL
sin~Dk3L/2!

~Dk3L/2!

3 exp~2iDk3L/2!. (5)

This situation is possible only if Dk3 5 k1A 2 k1B
→ 0. This condition can be fulfilled, for example, in
uniaxial crystals, if the fundamental wave propagates
along the optical axis. At this phase-matching condition,
when the medium is noncentrosymmetric the effect of
XPW generation is a result of interference between the
second-order cascaded cubic term governed by s1s2 /Dk1
and the contribution of the direct third-order process gov-
erned by g. The two terms are of the same order of mag-
nitude: In some crystals the cascaded term is bigger
(see, e.g., Ref. 20); in others, the direct term is bigger (see,
e.g., Ref. 17), and measurement of the efficiency of XPW
generation in this phase-matched condition will in some
cases permit the expression of third-order susceptibility
tensor components in terms of second-order susceptibility
tensor components.10,11,16,18 Centrosymmetric and non-
centrosymmetric crystals with x1111

(3) not equal to 3x1122
(3)

and nonvanishing x1112
(3) and x1222

(3) tensor components are
suitable for observation of the AAA* → B process with
this phase-matching condition.43 The case Dk3 → 0 is
fulfilled automatically in any direction in cubic crystals
and in biaxial crystals along the axes. The other possibil-
ity is to use QPM47 in noncentrosymmetric crystals, cre-
ating in the crystal a QPM grating with period L such
that Dk3
5 k1A 2 k1B 1 (2p/L) → 0.

For condition (d), both SHG and DFM are simulta-
neously close to an exact phase-matching condition. For
this case of double phase matching we have

B~Dk1 5 0, Dk2 5 0 ! 5 2uAu2ALS s1s2

2
L 1 ig D . (6)

XPW generation is the result of cascading from two
phase-matched second-order processes. The contribution
of the inherent cubic nonlinearity can be neglected be-
cause the inequality u s1s2L/2gu @ 1 is well fulfilled. In-
deed, taking advantage of the data for x (3) in BBO that
were published in Ref. 48, one can get u s1s2L/2gu ' 15.
In this approximation the efficiency of XPW generation
will depend on the crystal’s length as L4.

We can see that, in all the cases considered here, inde-
pendently of the phase-matching conditions the ampli-
tude of the XPW follows a cubic law dependence with re-
spect to the input fundamental amplitude. Nevertheless,
this consideration, as will be shown in Section 3, is valid
only up to power levels for which u s1ALu , 1 and
u s2ALu , 1.

It is clear from a comparison of the previously pub-
lished treatments10,11,49 of cascade phase-matched THG
in quadratic media and from the simplified analysis pre-
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Table 1. Schemes for XPW Generation in a Quadratic Medium

Case Designation Input Wave Step I SHG Step II DFM Equivalent Cubic Interaction

O1a o o1o1 → e2 e2o1 → e1 o1o1o1 → e1

O2 o o1o1 → o2 o2o1 → e1 o1o1o1 → e1

E1 e e1e1 → o2 o2e1 → o1 e1e1e1 → o1

E2 e e1e1 → e2 e2e1 → o1 e1e1e1 → o1

a Realized in our experiment.

Table 2. Point Groups of Uniaxial Quadratic Crystals in Which Single-Crystal XPW Generation Is Possible

Point Group

Optimal Azimuthal Angle for the Processes
o1o1 2 e2,e2o1 2 e1;
e1e1 2 o2,o2e1 2 o1;
e1e1 2 e2,e2e1 2 o1

a
Optimal Azimuthal Angle for the Process

o1o1 2 o2,o2o1 2 e1

4̄m2 22.5°, 67.5° Not possible

3m Depends on ratio d22/d31 Depends on ratio d22/d31

4̄ Depends on ratio d36/d31 Not possible

3 Depends on ratios d11/d31 and d22/d31 Depends on ratio d11/d31 and d22/d31

32 15°, 45°, 75° 15°, 45°, 75°

6̄ Depends on ratio d22/d11 Depends on ratio d22/d11

6̄m2 15°, 45°, 75° 15°, 45°, 75°

a We obtain optimal azimuthal angle w by maximizing the product udeff,I stepdeff,II oeeu.
sented here that a similarity exists between the processes
of cascaded single-crystal THG and that of a single-
crystal XPW generation. The difference is that in the
case of THG the second step is sum-frequency mixing in-
stead of DFM. Cascaded THG in x (2) media can be ob-
served under the same phase-matching conditions as dis-
cussed above: DkSH 5 k2 2 2k1 ' 0, DkSFM 5 k3 2 k2
2 k1 ' 0, and Dk3 5 k3 2 3k1 ' 0. We would point

out, however, that in some publications11,20 it is wrongly
stated that cascaded phase-matched THG is not possible
when DkSH ' 0.

Several uniaxial and biaxial crystal point groups can be
host materials for cascaded XPW generation. We have
analyzed uniaxial crystals. Combinations of the two dif-
ferent second-order processes that will generate a XPW in
quadratic uniaxial nonlinear crystals are listed in Table
1. For negative uniaxial crystals (which correspond to
most of the known quadratic crystals used in nonlinear
optics) that utilize birefringence phase matching, only
cases O1 and E2 (Table 1) are possible; for case E2 only,
step II (DFM) can be phase matched. Cases O2 and E1
could be observed with birefringent positive uniaxial non-
linear crystals. So XPW generation will be possible in
crystals that support type I and type II quadratic pro-
cesses simultaneously; the uniaxial noncentrosymmetric
point groups that are suitable for this type of support are
listed in Table 2. One should judge the optimal polar
angle for simultaneous type I and type II effective nonlin-
ear coefficients. Note however that, of 21 noncentrosym-
metric classes, 18 exhibit natural optical activity that
may mask the effect of XPW generation.

Both birefringent phase-matching techniques and
QPM47,50–55 can be used for all methods of XPW genera-
tion listed in Table 1.
3. EFFICIENCY OF XPW GENERATION
The simplified analysis presented in Section 2 gives the
overall conditions for nonlinear optical generation of
XPWs but is not accurate for calculation of conversion ef-
ficiency in an actual experiment because of the effects of
depletion. In fact, if the first step (SHG) is phase
matched, the depletion of the fundamental wave has to be
taken into account. If the second step is phase matched,
the magnitude of the generated XPW is of the same order
as that of the non-phased-matched SH wave generated in
the first step. Then the depletion of the SH wave has to
be taken into account. General plane-wave equations
are written as (see e.g., Refs. 22 and 32)

]A

]z
5 2 is1SA* exp~2iDk1z !2is2SB* exp~2iDk2z !,

(7a)

]S

]z
5 2is1A2 exp~iDk1z !2i2s2AB exp~iDk2z ! (7b)

]B

]z
5 2is2SA* exp~2iDk2z !. (7c)

In principle, Eqs. (7) should include four different cou-
pling coefficients s i . However, neglecting frequency dis-
persion for index of refraction ni and x (2), which is quite
reasonable for the transparency band of the crystal, we
reduce the number of the independent coupling coeffi-
cients to two: s1 and s2 . We have omitted the term in-
volving direct cubic nonlinearity because, as we pointed
out in Section 2, it is important only when Dk3 → 0, a
case not considered here in detail.
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A. XPW Generation with Double Phase Matching
The case when both processes are phase matched is the
most interesting situation from the application point of
view, because in this case we can obtain maximum con-
version into a XPW. Theoretically this case was consid-
ered by one of the present authors in Ref. 32, where al-
most 60% conversion was predicted when s2 /s1 5 1. We
moreover expect that by optimizing the ratio s2 /s1 we
can achieve conversion efficiency close to 100%. It is re-
alistic to plan experiments with both steps phase
matched, as several methods were recently proposed (for
a review see Ref. 51) for simultaneous phase matching of
two quadratic processes. For example, the method sug-
gested in Ref. 52 uses a single quasi-phase-matched grat-
ing. Indeed, to achieve double phase matching one can
employ first-order QPM for one of the parametric pro-
cesses and third-order QPM for the second parametric
process. An example of a quasi-phase-matched grating
designed to generate a XPW in a periodically poled
LiNbO3 sample is given in Ref. 32. Other methods of
double phase matching use nonperiodic quasi-phase-
matched structures, such as phase reversal quasi-phase
matched53 and periodically chirped quasi-phase
matched54 gratings. The structure made from quasi-
periodic optical superlattices13,14,55 that follow Fibonacci-
type sequences can be employed for achieving simulta-
neous phase matching of several processes and therefore
can be used as media for multistep SOC. Double phase
matching in a broad spectral range can be achieved by use
of uniform quasi-phase-matched gratings in a noncol-
linear geometry.51 A promising environment for multiple
phase matching and multistep cascading is furnished by
two-dimensional nonlinear photonic crystals.56,57 This
type of nonlinear medium has a uniform index of refrac-
tion but a periodic two-dimensional variation of the sign
of the second-order nonlinearity. This type of structure
can support simultaneous phase matching of two and
even three second-order nonlinear optical processes.58–60

As we have performed experiments in which we used a
single crystal with birefringence phase matching for one
of the steps, the theoretical analysis that follows is de-
voted to such cases.

B. Phase Matching for Second-Harmonic Generation
When only the first step, v 1 v 5 2v, is phase matched,
the intensities of the fundamental and the SH waves are
much bigger than the intensity of the XPW; the influence
of wave B on the fundamental and SH waves can there-
fore be neglected, and the system of Eqs. (7a) and (7b) can
be solved separately. In conditions of exact phase match-
ing (Dk1 5 0), the SH wave grows according to S(z)
5 A0 tanh( s1A0z), and the fundamental wave amplitude
follows A(z) 5 A0 /cosh( s1A0z). It is clear that, at high
conversion into a SH wave (when us1A0uL . 0.5), the
fundamental wave will be strongly depleted, and this will
reduce conversion into a XPW. This is confirmed by the
analytical formula obtained for the XPW conversion effi-
ciency. By substituting the expressions for S(z) and
A(z) into Eq. (7c) and integrating by parts, we get

uB/A0u2 5 Fs2A0 tanh~ s1A0L !sech~ s1A0L !

Dk2
G2

. (8)
We show in Fig. 2 the conversion of the fundamental
wave into a XPW as a function of dimensionless input am-
plitude s1A0L according to Eq. (8). Maximum conver-
sion into a XPW is obtained for input intensities that cor-
respond to a normalized value for s1A0L 5 1.47. It is
interesting to note [Eq. (8)] that the dependence of the
XPW intensity on the intensity of the fundamental wave
is cubic at low input intensities and that this dependency
afterward reaches a saturation level followed by decreas-
ing efficiency owing to strong depletion of the fundamen-
tal wave.

For the dependence on conversion of the fundamental
into a XPW with a slight deviation of the first step from
the exact phase matching condition, Eqs. (7) are solved
numerically; results are shown in Fig. 3. It can again be
seen that at very high intensities the conversion into a

Fig. 2. Phase-matched first step. Conversion efficiency for the
SH wave (dashed curve), XPW efficiency magnified 5(Dk2L)2

times (solid curve), and depletion of the fundamental intensity
(dotted curve) as functions of dimensionless input amplitude pa-
rameter s1A0L. Ratio u s2 /s1u 5 0.53.

Fig. 3. Phase-matched first step. Conversion efficiency for the
SH wave (dotted curves) and the XPW (solid curves) as functions
of the detuning of the first step from exact phase matching for
two values of the normalized input amplitude: (a) s1A0L 5 1,
(b) s1A0L 5 2. The XPW efficiency is magnified 3(Dk2L)2

times. Ratio u s2 /s1u 5 0.53.
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XPW tends to decline. At high input intensities the tun-
ing curves have a deep peak in the center. The maxi-
mum for the XPW signal is not therefore located at the
exact phase matching condition for the first step.

C. Phase Matching for Difference-Frequency Mixing
For phase matching for DFM (Dk2 ' 0) the generated
SH wave is non-phase matched. Its amplitude is
;uDk1Lu2 times weaker than the fundamental amplitude
(typically uDk1Lu ; 1000–10000). The generated XPW
has the same order of magnitude as the fundamental
wave. The generated XPW and SH waves cannot have
serious effects on the fundamental wave. For this reason
it is acceptable to use the approximation of nondepletion
of the fundamental wave, i.e., ]A/]z ' 0. Then Eqs. (7)
can be solved exactly for arbitrary values of Dk1 and Dk2 .

Indeed, Eq. (7) can be transformed into two separate
second-order equations for waves S(z) and B(z):

S ]2

]z2 1 iDk2

]

]z
1 2s2

2A2DB~z !

5 2s1s2A3 exp~2iDk3z !, (9)

S ]2

]z2 2 iDk2

]

]z
1 2s2

2uAu2DS~z !

5 2s1Dk3A2 exp~iDk1z !. (10)

Details of the derivation of Eqs. (9) and (10) are presented
in Appendix A. Using S(0) 5 0, B(0) 5 0 and A(0)
5 A0 as initial conditions, we find that the solutions of
Eqs. (9) and (10) give, for conversion efficiencies hB
5 @B(L)/A0#2 and hS 5 @S(L)/A0#2, respectively,

hB 5 S 2
s1s2A0

2

Q
D 2H Fdk

q
sinS qL

2 D 2 sinS dkL

2 D G2

1 F cosS qL

2 D 2 cosS dkL

2 D G2J , (11)

hS 5 S s1A0Dk3

Q D 2H F T

qDk3
sinS qL

2 D 1 sinS dkL

2 D G2

1 F cosS qL

2 D 2 cosS dkL

2 D G2J , (12)

where the following notation has been used: Q
5 Dk1Dk3 1 2s2

2A0
2, q 5 (Dk2

2 1 8s2
2A0

2)1/2, dk 5 2Dk1
2 Dk2 , and T 5 Dk2Dk3 1 4s2

2A0
2.

Equations (11) and (12) can be simplified for exact
phase matching for the second step (Dk2 5 0) and when
uDk1u @ u s2Au; this second condition was well fulfilled in
our experiment (Dk1 5 28900 cm21). Then, neglecting
small-amplitude oscillating terms in Eqs. (11) and (12),
we get

uB2u '
1

2

s1
2A4

Dk1
2 sin2~A2s2uA0uL !. (13)

This type of formula was obtained previously [see Ref.
15, Eq. (3)] for cascading THG in a x (2) crystal, again
demonstrating the similarity of the process of cascading
XPW generation and cascading THG.
It is interesting to note that the ratio between the non-
phase-matched SH intensity and the XPW intensity is
constant. Indeed, besides exact phase matching for the
second step, where uDk2u . u s2A0u, we can obtain

uS2u ' 4
s1

2A0
4

Dk1
2 sin2S 1

2
Dk1L D . (14)

Comparing formulas (13) and (14), we can see that at
the output of the crystal the ratio uS/Bu2 5 8 does not de-
pend on pump intensity or on phase mismatch Dk1 (this
result is obtained when the two sine curves are taken at
their maxima).

In Fig. 4 the theoretical angular dependencies for the
XPW and the non-phase-matched SH intensities are
shown for three levels of input power. The curves were
plotted with the parameters of the experiment performed
in a BBO crystal as described in subsection 3.D below.
Dk2 5 0 corresponds to phase-matching angle uPM . It
has to be noted that the change of angle u causes changes
in both Dk1 and Dk2 phase-matching parameters. This
is the reason for the fringe behavior of the non-phase-

Fig. 4. Phase-matched second step. Theoretical predictions for
XPW conversion efficiency, hB 5 IB /IA (darker curves) and SH
signal, ISHG /IA (lighter curves) for deviation Du about the PM
angle for type II SHG for three input intensities. Ratio
u s2 /s1u 5 0.53; length of the BBO crystal, L 5 1.5 mm. The
curves for the conversion into SH wave S are divided by 8.
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Table 3. Parameters of BBO Crystal Used for XPW Generationa

Point group 3m negative uniaxial crystal
Transparency range 0.189–3.5 mm
Linear absorption coefficient at 532 nm 0.01 cm21

d (2) coefficients at 850 nm d22 5 2.3 pm/V, d31 5 0.04 pm/V
x (3) coefficient at 850 nm x (3) 5 3.3 3 10222 m2/V2

Type I SHG interaction
Length of crystal 1 mm
Effective nonlinearity in phase-matching direction deff,ooe 5 d31 sin u 2 d22 sin(3w)cos u

Phase matching and azimuthal angles uPM 5 38.83°, w 5 15°
Calculated refractive indices no,620 5 ne,310 5 1.6679273
Calculated spectral width of the phase-matched curve (FWHM) DlPM 5 1.5 nm
Calculated internal angular width of the
phase-matched curve (FWHM)

DuPM 5 0.12°

Walk-off angle r 5 4.62°
Aperture length La 5 d/r 5 2.46 mm
Group-velocity delay n1o22e 5 378 fs/mm
Nonstationary length Ln,1o22e 5 t/n1o22e 5 0.264 mm

Type II SHG interaction
Length of crystal 1.5 mm
Effective nonlinearity in phase matching direction deff,eoe 5 deff,oee 5 d22 cos(3w)cos2 u

Phase matching and azimuthal angles uPM 5 58.33°, w 5 15°
Calculated refractive indices ne,610 5 1.58006, ne,310 5 1.62399
Calculated spectral width of the phase-matched curve (FWHM) DlPM 5 1.1 nm
Calculated internal angular width of the
phase-matched curve (FWHM)

DuPM 5 0.16°

Walk-off angles r1o21e 5 3.62°, r1o22e 5 4.01°
Aperture lengths La,1o21e 5 3.2 mm, La,1o22e 5 2.9 mm
Group-velocity delays n1o22e 5 172 fs/mm, n1e22e 5 488 fs/mm, n1o21e

5 316 fs/mm
Nonstationary lengths Ln,1o22e 5 0.58 mm, Ln,1e22e 5 0.21 mm, Ln,1o21e

5 0.32 mm

a Pump wavelength, 620 nm. Based on the data from Refs. 46, 48, and 61.
matched SH signal. One can see the depletion of the SH
signal when a XPW is generated about phase-matching
angle uPM for type II SHG. The theoretical phase-
matched curves are slightly asymmetrical. One can also
notice a broadening of the curves with increasing input
amplitude.

D. Comparison of the Scheme with Phase-Matched
Second-Harmonic Generation and the Scheme
with Phase-Matched Difference-Frequency Mixing
For the scheme with the first step phase matched (Dk1
5 0), the saturation intensity is defined by the condition
I ' Icr,1 , with Icr,1 ' 1.5(«0cn/2s1

2L2). In contrast, the
conversion efficiency into the XPW in the scheme with the
second step phase matched (Dk2 5 0) does not saturate;
for input intensities I , Icr,2 with Icr,2 ' «0cn/4s1

2L2 the
XPW efficiency grows with quadratic law, and above this
critical intensity the efficiency growth is linear. For
the parameters of the BBO experiment described in Sec-
tion 4 (see also Table 3), Icr,1 5 8 GW/cm2 and Icr,2
5 6.6 GW/cm2. The conversion efficiency is proportional
to (Dk2L)22 when the first step is phase matched and to
(Dk1L)22 when the second step is phase matched. That
is why the choice of interactions with smaller mismatch
for the non-phase-matched step is essential.

It is interesting to compare analytically the efficiency of
the generation of XPW for various phase-matching condi-
tions. We obtain the ratio uB2 /B1u2 of XPW intensity for
Dk2 5 0 versus XPW intensity for Dk1 5 0 by combining
formulas (8) and (13):

uB2 /B1u2 5
1

2 FDk2

Dk1

s1

s2

cosh~ s1A0L !

tanh~ s1A0L !
G2

. (15)

At high values of u s1A0uL and comparable values for
Dk1 and Dk2 , XPW generation with the second step
phase matched [condition (b)] is much more efficient. In-
deed, in this limit (u s1A0uL @ 1) Eq. (15) becomes

uB2 /B1u2 5 S Dk2

Dk1

s1

s2
D 2

exp~2u s1A0uL !.

4. EXPERIMENTAL RESULTS AND
DISCUSSIONS
For practical realization of a specific phase-matching con-
dition for a XPW generation, we first used a BBO crystal
cut for type II SHG (e1o1 → e2) phase matching at the
fundamental beam wavelength, l1 5 620 nm. We recall
that e1o1 → e2 and e2o1 → e1 geometries are bound by
the same phase-matching constraints. Generation of a
XPW is the result of the cascading case labeled O1 in
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Table 1. Taking into account that in BBO crystal d15
! d22 ,61 we can write the effective nonlinearities for

type I and type II SHG as

deff,ooe ' 2d22 sin~3w!cos u, (16)

deff,oee 5 d22 cos~3w!cos2 u. (17)

The value of azimuthal angle w ( w 5 15°) was chosen
to maximize the product deff,ooedeff,oee and therefore ensure
simultaneous action of the two steps.

The experimental setup is shown in Fig. 5. The pa-
rameters of the BBO samples used in the experiments are
listed in Table 3. The input beam at l1 5 620 nm was
produced by a colliding-pulse mode-locked dye system.
The laser pulses used had the following parameters: du-
ration, ;100 fs; energy, as much as 5 mJ, repetition rate,
10 Hz. The laser beam was focused with a lens ( f
5 1.5 m) that produced in the plane of the crystal a spot
with r 5 0.2 mm. To avoid depolarization in the crystal
we tuned the input polarization (o wave) perpendicularly
to the plane formed by the fundamental wave vector and
the optical axis of the BBO crystal. In this way, the ex-
tinction ratio of the system polarizer–BBO crystal–
analyzer, measured at relatively low input power, reduces
to RX(0) 5 Ibg /Io,in 5 6 3 1026, where Ibg corresponds to
background intensity. At the output of the crystal we
also detected a non-phase-matched SH signal that was
decreasing with increasing angle u. Although the SH sig-
nal was non-phase matched, Maker fringes were not ob-
served. When angle u (the angle between wave vector k
and the crystal axis) is tuned to uPM 5 58.33°—the exact
phase-matching value for e2o1 → e1 and e1o1 → e2—no
additional SH signal can be detected: This is an addi-
tional check that only one ordinary, polarized wave is en-
tering the crystal. From these initial conditions, an in-
crease of the input power led to a worsening of the
extinction ratio RX(Io,in) 5 RX(0) 1 RNL(Io,in), an indi-
cation that a new signal, polarized perpendicularly to the
input wave, is generated by a nonlinear optical process in
the crystal. In Fig. 6 the increase of the extraordinary
component of the signal (Ie,out 2 Ibg) at the output of the
system polarizer–BBO crystal–analyzer is shown as a
function of the input intensity.

Fig. 5. Experimental arrangement: NDF, neutral-density fil-
ters; L’s, lenses; P, polarizer; RT, three-axis rotational table; A,
analyzer; C, color filter; PD’s, photodiodes.
Special attempts have been made to define the power
law of the generated XPW signal. The corresponding ex-
perimental curve is shown in Fig. 6. Formula (13) re-
veals that at low input intensity, when u s2AuL ! 1, the
intensity of wave B has a cubic dependence on the funda-
mental wave intensity: B } ( s1s2 /Dk1)A3L. At
higher input intensities, when u s2AuL . 1, the depen-
dence becomes quadratic. As a reference, for a BBO crys-
tal, u s2AuL 5 1 corresponds to an input intensity of 13.2
GW/cm2 when the relevant second-order component has a
value d22 5 2.3 pm/V (Ref. 61) and the crystal length is
0.15 cm. Our experimental investigation of the depen-
dence of XPW intensity on pump input intensity (Fig. 6)
shows a quadratic dependence that is in good accordance
with the prediction of formula (13). A similar experimen-
tal observation of a quadratic dependence for a cubic pro-
cess is reported in Ref. 15, whose authors investigated
THG in a single quadratic crystal.

The reason that we could not explore the range for
which u s2AuL , 1 is the presence of linear depolarization
in the system polarizer–BBO crystal–analyzer. With
specially chosen high-quality polarizers we expect a de-
crease in the magnitude of the extinction ratio; then the
region of cubic dependence of this effect can be detected.
The other possibility to explore the range us1A0uL , 1 is
to use crystals with higher nonlinearities.

The maximum efficiency of the generated XPW that is
achievable for input intensities that are close to the dam-
age threshold of the BBO crystal (500 GW/cm2) was mea-
sured to be RNL 5 1.8 3 1025. At 500 GW/cm2 and for
u s1AuL 5 12 and L 5 0.15 cm, formula (13) predicts a
conversion efficiency into a perpendicular component
equal to 4 3 1025, that is, twice bigger than the experi-
mental measured efficiency. This agreement between ex-
periment and theory can be considered a good one if one
recalls that the theoretical analysis described in Section 3
has not taken into account either temporal and walk-off
effects or possible losses.

We measured simultaneously both a XPW at funda-
mental frequency and SH signals when the crystal was
tuned in a u range from 56° to 60°. As expected, the mag-
nitude of the XPW was sensitive to the deviation DuPM
5 u 2 uPM from the exact phase-matching angle. Re-
sults of these recordings are shown in Fig. 7. It can be
clearly seen that the non-phase-matched SH signal that

Fig. 6. Dependence of XPW signal (Ie,out 2 Ibg) on intensity of
the input pump. Solid curve, quadratic fit to the experimental
points that are recorded for Io,in , 350 GW/cm2.
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results from (o1o1 → e2) goes through a minimum at the
angle of maximum XPW signal. This behavior, predicted
by the theory, corresponds to depletion of the non-phase-
matched SH wave that is due to the generation of the
XPW. Moreover, as can be seen from the theoretical (Fig.
4) and the experimental (Fig. 7) curves, the general de-
crease of the non-phase-matched SH signal with increas-
ing angle u is related to the decrease in the coherence
length for non-phase-matched type I SHG in the first step
of this cascading interaction; in fact, an increase in u for
this process leads to an increase in the wave-vector mis-
match. We have also plotted in Fig. 7 the SH intensity
obtained with type II SHG measured separately when the
two eigenpolarizations are present in the BBO crystal
(e1o1 → e2). The maximum of the XPW signal coincides
with angle uPM at which type II SHG is expected to be
maximal. This identical position is an additional support
of our conclusion that the observed XPW signal results
from cascading of two different second-order processes
(o1o1 → e2 and e2o1 → e1).

In contrast to the theoretical prediction (Fig. 4), the ex-
perimental dependence of the SH wave intensity on the
deviation DuPM (Fig. 7) does not contain Maker fringes.
We remind the reader that in the system of differential
equations used for the theoretical analysis presented in
Section 3 the terms connected with the temporal and the
spatial walk-off effects have been omitted; i.e., the theo-
retical analysis is valid for the cw plane-wave approxima-
tion when L ! lnst (lnst is the figure of merit for the effects
caused by temporal walk-off) and L ! la (la is the figure
of merit for the effects caused by the spatial walk-off). In
fact, as one can see from Table 3, the nonstationary
lengths lnst were smaller than the lengths of the crystals
used, and obviously temporal walk-off effects cannot be
neglected. At L . lnst the group-velocity mismatch effect
tends to wash out the fringe pattern.62

The influence of the input power and length of the BBO
crystal on the width of phase-matched curve DuPM is il-
lustrated in Fig. 8. A decrease in the BBO crystal’s
length at fixed input power leads to an increase of DuPM .
This behavior has its confirmation in our theoretical in-
vestigation. As can be seen from Fig. 8, a decrease in the

Fig. 7. Experimentally measured XPW signal and non-phase-
matched SH signal as a function of the deviation Du from the
phase-matched angle for type II SHG. Input power for these
two curves, Io,in ' 300 GW/cm2. The lowest curve, taken with
Io,in ' 30 GW/cm2, represents a phase-matched type II SHG sig-
nal measured in a separate experiment when the input polarizer
was misaligned (both o and e waves enter the BBO crystal).
input power results in a decrease of DuPM , in accordance
with the predictions from Eq. (11), as illustrated in Fig. 4.

As can be seen from relation (13), conversion efficiency
of the fundamental wave into a XPW depends strongly on
the magnitude of phase-mismatch parameter Dk1 . For
the BBO experiment reported here, the magnitude of Dk1
was dramatically high (Dk1 5 8900 cm21), and this was
the main reason for the low efficiency of conversion into a
XPW. We have calculated that the same experiment per-
formed in the infrared spectral region would yield a con-
version efficiency 2 orders of magnitude higher. Of
course, the best approach to achieving high conversion
into a XPW is to use one of the methods for simultaneous
phase matching for both second-order processes discussed
in Subsection 3.A.

The experiment for measuring the effect of XPW gen-
eration with the first step phase matched was performed
with a 1-mm-long BBO crystal cut for type I SHG, uPM
5 38.9°, and azimuthal angle w 5 15°. The signal in

this case was weaker than in the case of XPW generation
in crystals cut for type II SHG. The angular dependence
of the XPW signal is shown in Fig. 9. It can be seen to be
qualitatively in agreement with the prediction shown
in Fig. 3. We attribute the observed asymmetry to the in-
terference between the generated XPW and the depolar-
ized fundamental component at the input face of the
crystal.

Fig. 8. Normalized XPW signal for three different sets of input
power and crystal length.

Fig. 9. Experimentally measured XPW signal and attenuated
phase-matched SH signal as functions of deviation Du from the
phase-matched angle for type I SHG. Input power, Io,in
' 350 GW/cm2.
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5. CONCLUSION
We have described theoretical and experimental investi-
gations of phase-matched cross-polarized wave genera-
tion resulting from the simultaneous action of two differ-
ent second-order processes in a single nonlinear medium.
This four-wave mixing is fully degenerate in frequency
but is nondegenerate with respect to the polarization
state of the interacting waves. Like other cascading pro-
cesses observed in quadratic media, the generation of a
cross-polarized wave simulates a third-order process that
is likely to be observed in centrosymmetric media.

We believe that the experimental and the theoretical
work reported here will stimulate similar experiments
with periodically poled media for which the efficiency
would be much higher. In fact, effective nonlinearities in
periodically poled LiNbO3 and LiTaO3 crystals are ;1 or-
der of magnitude higher than the effective nonlinearity of
the b-BaB2O4 crystal used in the present experiment.

If we do not restrict ourselves to single nonlinear me-
dium, it is possible to generate efficient XPW in two non-
linear media, the first of them designed for phase-
matched type I SHG and the second for phase-matched
type II difference-frequency mixing. Each medium can
be optimized separately for maximum efficiency (it is not
necessary that the chosen media simultaneously support
both processes, as it is in the case of a single-crystal de-
vice; therefore two different crystals can be used). The
theoretical description is similar to the description of
third-harmonic generation with two crystals. A double
quasi-phase-matched grating structure upon a single
substrate63 is also a possible design for a double phase-
matched device for efficient XPW generation.

All-optical switching and optical limiting could be some
possible applications of the double phase-matched devices
designed for efficient XPW generation.

APPENDIX A
For the derivation of Eqs. (9) and (10) we multiply Eq.
(7b) by exp(2iDk2z) and Eq. (7c) by exp(iDk2z), and, differ-
entiating the expressions obtained, we have

S ]2

]z2 2 iDk2
]

]z DS 1 2is2A
]B
]z

exp~iDk2z !

5 2s1Dk3A2 exp~iDk1z !, (A1)

S ]2

]z2 1 iDk2

]

]z DB 5 2is2A
]S

]z
exp~2iDk2z !. (A2)

By replacing the derivatives ]B/]z and ]S/]z in Eqs. (A1)
and (A2) with their equivalents, Eqs. (7c) and (7b), we ob-
tain two separate second-order differential equations,
Eqs. (9) and (10), for the SH amplitude and the XPW am-
plitude, respectively.
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17. J. P. Fève, B. Boulanger, and Y. Guillien, ‘‘Efficient energy
conversion for cubic third-harmonic generation that is
phase matched in KTiOPO4 ,’’ Opt. Lett. 25, 1373–1375
(2000).

18. Ch. Bosshard, U. Gubler, P. Kaatz, W. Mazerant, and U.
Meier, ‘‘Non-phase-matched optical third-harmonic genera-
tion in noncentrosymmetric media: cascaded second-order
contributions for the calibration of third-order nonlineari-
ties,’’ Phys. Rev. B 61, 10,688–10,701 (2000).

19. V. V. Konotop and V. Kuzmiak, ‘‘Simultaneous second- and
third-harmonic generation in one-dimensional photonic
crystals,’’ J. Opt. Soc. Am. 16, 1370–1376 (2000).

20. Y. Takagi and S. Muraki, ‘‘Third-harmonic generation in a
noncentrosymmetrical crystal: direct third-order or cas-
caded second-order process?’’ J. Lumin. 87–89, 865–867
(2000).

21. K. Koynov and S. Saltiel, ‘‘Nonlinear phase shift via x (2)

multistep cascading,’’ Opt. Commun. 152, 96–100 (1998).
22. S. Saltiel, K. Koynov, Y. Deyanova, and Yu. S. Kivshar,

‘‘Nonlinear phase shift resulting from two-color multistep
cascading,’’ J. Opt. Soc. Am. B 17, 959–965 (2000).

23. Yu. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel, ‘‘Two-
color multistep cascading and parametric soliton-induced
waveguides,’’ Phys. Rev. E 60, R5056–R5059 (1999).

24. Yu. S. Kivshar, T. J. Alexander, and S. Saltiel, ‘‘Spatial op-
tical solitons resulting from multistep cascading,’’ Opt. Lett.
24, 759–761 (1999).

25. I. Towers, R. Sammut, A. V. Buryak, and B. A. Malomed,
‘‘Soliton multistability as a result of double-resonance wave
mixing in media,’’ Opt. Lett. 24, 1738–1740 (1999).

26. I. Towers, A. V. Buryak, R. A. Sammut, and B. A. Malomed,
‘‘Quadratic solitons resulting from double-resonance wave
mixing,’’ J. Opt. Soc. Am. B 17, 2018–2025 (2000).

27. V. V. Konotop and V. Kuzmiak, ‘‘Double-resonant processes
in x (2) nonlinear periodic media,’’ J. Opt. Soc. Am. B 17,
1874–1883 (2000).

28. G. Assanto, I. Torelli, and S. Trillo, ‘‘All-optical processing
by means of vectorial interactions in second-order cascad-
ing: novel approaches,’’ Opt. Lett. 19, 1720–1722 (1994).

29. S. Trillo and G. Assanto, ‘‘Polarization spatial chaos in sec-
ond harmonic generation,’’ Opt. Lett. 19, 1825–1827 (1994).

30. A. D. Boardman and K. Xie, ‘‘Vector spatial solitons influ-
enced by magneto-optic effects in cascadable nonlinear me-
dia,’’ Phys. Rev. E 55, 1899–1909 (1997).

31. A. D. Boardman, P. Bontemps, and K. Xie, ‘‘Vector solitary
optical beam control with mixed type I–type II second-
harmonic generation,’’ Opt. Quantum Electron. 30, 891–905
(1998).

32. S. Saltiel and Y. Deyanova, ‘‘Polarization switching as a re-
sult of cascading of two simultaneously phase-matched pro-
cesses,’’ Opt. Lett. 24, 1296–1298 (1999).

33. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, ‘‘1.5-
mm-band wavelength conversion based on difference-
frequency generation in LiNbO3 waveguides with inte-
grated coupling structures,’’ Opt. Lett. 23, 1004–1006
(1998).

34. K. Gallo and G. Assanto, ‘‘Analysis of lithium niobate all-
optical wavelength shifters for the third spectral window,’’
J. Opt. Soc. Am. 16, 741–753 (1999).

35. G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, and D. For-
tusini, and J. N. Sherwood, ‘‘Frequency shifting through
cascaded second-order processes in an N-(4-nitrophenyl)-L-
prolinol crystal,’’ Opt. Lett. 23, 439–441 (1998).

36. G. I. Petrov, O. Albert, J. Etchepare, and S. M. Saltiel,
‘‘Cross-polarized wave generation by effective cubic nonlin-
ear optical interaction,’’ Opt. Lett. 26, 355–357 (2001).

37. L. Lefort and A. Barthelemy, ‘‘Intensity-dependent polariza-
tion rotation associated with type II phase-matched second-
harmonic generation: application to self-induced transpar-
ency,’’ Opt. Lett. 20, 1749–1751 (1995).

38. L. Lefort and A. Barthelemy, ‘‘All-optical transistor action
by polarization rotation during type-II phase-matched sec-
ond harmonic generation,’’ Electron. Lett. 31, 910–911
(1995).

39. I. Buchvarov, S. Saltiel, Ch. Iglev, and K. Koynov, ‘‘Intensity
dependent change of the polarization state as a result of
nonlinear phase shift in type II frequency doubling crys-
tals,’’ Opt. Commun. 141, 173–179 (1997).

40. M. Asobe, I. Yokohama, H. Itoh, and T. Kaino, ‘‘All-optical
switching by use of cascading of phase-matched sum-
frequency generation and difference-frequency generation
processes in periodically poled LiNbO3,’’ Opt. Lett. 22, 274–
276 (1997).

41. M. A. Krumburel, J. N. Sweetser, D. N. Fittinghoff, K. W.
DeLong, and R. Trebino, ‘‘Ultrafast optical switching by use
of fully phase matched cascaded second-order nonlineari-
ties in a polarization-gate geometry,’’ Opt. Lett. 22, 245–247
(1997).

42. J. N. Sweetser, M. A. Krumburel, and R. Trebino, ‘‘Ampli-
fied ultrafast optical switching by cascading cascaded
second-order nonlinearities in a polarization-gate geom-
etry,’’ Opt. Commun. 142, 269–272 (1997).

43. N. I. Zheludev and A. D. Petrenko, ‘‘Physical mechanisms of
nonlinear optical activity in crystals,’’ Kristallografiya 29,
1045–1052 (1985) [ Sov. Phys. Crystallogr. 29, 613–617
(1984)].

44. A. I. Kovrigin, D. V. Yakovlev, B. V. Zhdanov, and N. I. Zhe-
ludev, ‘‘Self-induced optical activity in crystals,’’ Opt. Com-
mun. 35, 92–95 (1980).

45. M. G. Dubenskaya, R. S. Zadoyan, and N. I. Zheludev,
‘‘Nonlinear polarization spectroscopy in GaAs crystals:
one- and two-photon resonances, excitonic effects, and the
saturation of nonlinear susceptibilities,’’ J. Opt. Soc. Am. B
2, 1174–1178 (1985).

46. V. G. Dimitriev, G. G. Gurzadyan, and D. N. Nikogosyan,
Handbook of Nonlinear Optical Crystals (Springer-Verlag,
Berlin, 1999).

47. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer,
‘‘Quasi-phase matched second harmonic generation: tun-
ing and tolerances,’’ IEEE J. Quantum Electron. 28, 2631–
2654 (1992).

48. M. Sheik-Bahae and M. Ebrahimzadeh, ‘‘Measurement of
nonlinear refraction in the second-order x (2) materials
KTiOPO4 , KNbO4 , b-BaB2O4 , and LiB3O5’’ Opt. Commun.
142, 294–298 (1997).

49. G. I. Petrov, S. M. Saltiel, and A. B. Ivanova, ‘‘Measurement
of x (2) components by comparing polarization resolved
second-order cascade processes,’’ in ICONO’98: Nonlinear
Optical Phenomena, S. Chesnokov, V. Kandidov, and N. Ko-
roteev, eds. Proc. Proc. SPIE 3733, 112–120 (1999).

50. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R.
Bosenberg, and J. W. Pierce, ‘‘Quasi-phase-matched optical
parametric oscillators on bulk periodically poled LiNbO3 ,’’
J. Opt. Soc. Am. B 12, 2102–2116 (1995).

51. S. M. Saltiel and Yu. S. Kivshar, ‘‘Phase-matching for non-
linear optical parametric processes with multistep-
cascading,’’ Bulg. J. Phys. 27, 57–64 (2000).

52. O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak,
M. D. Levenson, and W. R. Bosenberg, ‘‘Continuous-wave
frequency tripling and quadrupling by simultaneous three-
wave mixing in periodically poled crystals: application to
a two-step 1.19–10.71-mm frequency bridge,’’ Opt. Lett. 22,
1211–1213 (1997).

53. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Br-
ener, ‘‘Multiple-channel wavelength conversion by use of
engineered quasi-phase-matching structures in LiNbO3
waveguides,’’ Opt. Lett. 24, 1157–1159 (1999).

54. O. Bang, C. B. Clausen, P. L. Christiansen, and L. Torner,
‘‘Engineering competing nonlinearities,’’ Opt. Lett. 24,
1413–1415 (1999).

55. K. Fradkin-Kashi and A. Arie, ‘‘Multiple-wavelength quasi-
phase-matched nonlinear interactions,’’ IEEE J. Quantum
Electron. 35, 1649–1656 (1999).

56. V. Berger, ‘‘Nonlinear photonic crystals,’’ Phys. Rev. Lett.
81, 4136–4139 (1998).

57. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Rich-
ardson, and D. C. Hanna, ‘‘Hexagonally poled lithium nio-
bate: a two-dimensional nonlinear photonic crystal,’’ Phys.
Rev. Lett. 84, 4345–4358 (2000).

58. S. Saltiel and Yu. S. Kivshar, ‘‘Phase matching in x (2) non-



Petrov et al. Vol. 19, No. 2 /February 2002 /J. Opt. Soc. Am. B 279
linear photonics crystals,’’ Opt. Lett. 25, 1204–1206; erra-
tum, 1612 (2000).

59. A. Chowdhury, S. C. Hagness, and L. McCaughan, ‘‘Simul-
taneous optical wavelength interchange with a two-
dimensional second-order nonlinear photonic crystal,’’ Opt.
Lett. 25, 832–834 (2000).

60. M. de Sterke, S. M. Saltiel, and Yu. S. Kivshar, ‘‘Efficient
collinear fourth-harmonic generation by two-channel multi-
step cascading in a single two-dimensional nonlinear pho-
tonic crystal,’’ Opt. Lett. 26, 539–541 (2001).

61. I. Shoji, H. Nakamura, K. Ohdaira, T. Kondo, R. Ito, T. Oka-
moto, K. Tatsuki, and S. Kubota, ‘‘Absolute measurement of
second-order nonlinear-optical coefficients of b-BaB2O4 for
visible to ultraviolet second-harmonic wavelengths,’’ J. Opt.
Soc. Am. B 16, 620–624 (1999).

62. S. A. Akhmanov and A. S. Chirkin, Statistical Phenomena
in Nonlinear Optics (Moscow State U. Press, Moscow, 1971;
in Russian).

63. Y. Deyanova, S. Saltiel, and K. Koynov, ‘‘Optimization of the
process of frequency tripling and quadrupling in double
grating quasi-phase matched structures,’’ Opt. Commun.
178, 437–447 (2000).


