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Abstract

Monolithic nonlinear crystal with two quasi-phase matched gratings designed for third or fourth harmonic generation is
investigated theoretically. The optimal lengths and the periods of the two quasi-phase matched gratings and also the
temperature and wavelength acceptance are found. The efficiency of this double-grating frequency monolithic converter is
compared with the efficiency of the converter that uses nonlinear crystal with Fibonacci optical superlattices. q 2000
Published by Elsevier Science B.V. All rights reserved.

PACS: 42.65.Ky; 42.79.Nv; 42.70.Mp

1. Introduction

Efficient third and fourth harmonic generation is
usually achieved by using tandem of birefringent

w xphase matched quadratic nonlinear crystal 1,2 . The
disadvantage of this method is that only limited
number of crystals allow birefringent phase match-
ing. It requires very precise crystal angular or tem-
perature alignment. Special alignment of the polar-
ization planes of the two crystals is necessary for

w xefficient tripling 2 . The efficiency of the process of
higher harmonic generation can be greatly increased
if instead of consequently situated crystals one can
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use single nonlinear crystal. The first suggestion
about phase-matched third-harmonic generation
Ž . Ž2.THG in single x nonlinear crystal can be found

w xin the book of Akhmanov and Khohlov 3 . Soon it
became clear that it is impossible to realize simulta-
neous birefringent phase matching for two processes
except for accidental input wavelengths and non-

w xcollinear geometry 4,5 . The last few years the
interest towards possibility to generate higher order
harmonics in monolithic nonlinear element appeared
again. For example, recently a new approach that
uses Fibonacci type aperiodic quasi-phase matched
Ž .QPM gratings was successfully applied for achiev-
ing simultaneous phase matching for the processes of
second harmonic generation and sum frequency mix-
ing and as a result efficient THG in single LiTaO3

w xcrystal 6,7 . An alternative approach for frequency
tripling and quadrupling that uses a single crystal
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w xQPM gratings was suggested in Ref. 8 and soon
w xrealized in GaAs 9 . In the first grating it is gener-

ated second harmonic wave, in the second grating is
generated third harmonic wave by sum-frequency

Ž .mixing vq2vs3v . In this first not optimized
attempt for construction single x Ž2. crystal fre-
quency tripler 0.66% peak power conversion effi-
ciency was achieved. Single periodically poled
lithium niobate crystal with two QPM gratings was
also employed to realize optical 1-to-3 frequency

w xdivision 10 .
In the last two works it is suggested that the two

gratings have to have equal lengths. There is no
works considering the optimization of these kind
single pass double grating structures. For example it
is interesting to define the optimal ratio of the lengths
of the two gratings. Such an optimization should lead
to increase of the efficiency of these types frequency
conversion devices. Additionally there is no work
where the two single crystal approaches for THG
Ž .Fibonacci grating and double-grating have been
compared.

In this paper we investigate theoretically the pro-
cess of frequency tripling and quadrupling in double
grating QPM structure by using numerical tech-
niques and applying for the first time low depletion

w xapproximation 11,12 for description of the cascade
second order frequency conversion processes. It is
found that the optimal grating length ratio depends
on the input intensity and the amount of the effective
second order susceptibility in each part of the crystal.

Fig. 1. Schematic of a monolithic double-grating frequency con-
Ž . Ž .verter for third harmonic a and fourth harmonic b generation.

L , L and L are QPM grating periods.2 3 4

ŽThe grating periods and the acceptance temperature
.and wavelength for some nonlinear crystals are also

calculated. The comparison of the Fibonacci ap-
proach and the double grating approach is presented.

The idea of the double grating frequency tripling
Ž .and quadrupling is presented in Fig. 1 a and Fig.

Ž .1 b . It is assumed that the QPM grating in the
leading part of the crystal is designed to support the

Ž .process of Type I second harmonic generation SHG
and the second part of the crystal is patterned for

Ž Ž ..phase matched THG Fig. 1 a by the process of
sum frequency mixing 2vqvs3v or forth har-

Ž Ž ..monic generation Fig. 1 b by the process of fre-
quency doubling of the generated in the first part of
the crystal second harmonic wave 2vq2vs4v.
The second grating can be designed for first or
higher-order QPM.

2. Plane wave equation systems

Amplitude equations system that describe the pro-
cess of SHG in the first part of the crystal in
suggestion of lossless nonlinear media and plane
wave linear polarized input wave has the form

d A1
)syis A A exp yiDk z , 1.1Ž . Ž .1 1 2 2d z

d A2 2syis A exp iDk z . 1.2Ž . Ž .2 1 2d z

The process of sum frequency generation 2vqv

s3v in the second part of the crystal is described
by:

d B1
)syis B B exp yiDk z , 2.1Ž . Ž .3 3 2 3d z

d B2
)syis B B exp yiDk z , 2.2Ž . Ž .4 3 1 3d z

d B3
syis B B exp iDk z . 2.3Ž . Ž .5 1 2 3d z

In the second part of the crystal of the frequency
Ž .converter shown in Fig. 1 b is generated fourth

harmonic wave. The QPM grating in this part of the
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crystal is constructed to phase match only the pro-
cess 2vq2vs4v. The equation system in this
case is

d B2
)syis B B exp yiDk z , 3.1Ž . Ž .6 2 4 4d z

d B4 2syis B exp iDk z . 3.2Ž . Ž .8 2 4d z

A , B , A , B , B , B are the complex ampli-1 1 2 2 3 4
Ž . Žtudes for the fundamental subindex 1 , second sub-

. Ž . Ž .index 2 , third subindex 3 , and fourth subindex 4
harmonic wave respectively They are connected to

Ž .the real amplitudes and phases by A sa exp iw ,j j j
Ž .js1,2 and B sb exp ic , js1,2,3,4. Phase mis-j j j

match parameters are as follow: Dk sk y2k y2 2 1

2pm rL , Dk s k y k y k y 2pm rL and1 2 3 3 2 1 2 3

Dk sk y2k y2pm rL , where L is the QPM4 4 2 2 4 2

grating period of the first part of the crystal L and3

L are the QPM grating periods for the second part4

of the crystal for the cases of third and fourth
harmonic generation, respectively.

Nonlinear coupling coefficients s are propor-j

tional to the dŽ2. value and depend on the order of
QPM grating used in any of the part of the crystal:

in the first part of the crystal

2 2p dŽ2.
2 v

s s , js1,2;j ž /m p l n1 1 j

in the second part of the crystal

2 2p dŽ2.
3v

s s , js3,4,5j ž /m p l n2 jy2 jy2

and

2 2p dŽ2.
4v

s s , js6,8.j ž /m p l n2 2 jy4

The ratios between all s depend on dispersion ofj

the nonlinear tensor component dŽ2. and the disper-
sion of the index of refraction n. The dispersion

effect of dŽ2. is described by the well known Miller
w xrule 13 . As a result we have

s s f s ; s s f s m rm ; s s2 f s ;Ž .2 2 1 3 5 1 1 2 4 2 3

s s3 f s ; s s2 f f s m rm ;Ž .5 3 3 6 2 6 1 1 2

s s f rf s ,Ž .8 4 2 6

where

dŽ2. n2 y13v 3
f sn rn , js2,3,4; f s s ;j 1 j 5 Ž2. 2d n y12 v 1

dŽ2. n2 y1 n2 y1Ž . Ž .4v 2 4
f s s .6 Ž2. 22d2 v n y1Ž .1

For the cases when the dispersion effects can be
neglected all f s1.j

The terms that are responsible for the other sec-
ond and third order interactions are omitted. These
terms are neglected because they are inefficient due
to very high value of the corresponding wave vector
mismatches.

There are two possible approaches for exact solu-
Ž . Ž . Ž .tion of systems 1 – 3 : i direct numerical integra-

Ž .tion; and ii analytical formulae expressed in Jacobi
elliptic functions and integrals. The use of such kind
of analytical formulae is rather difficult since the
elliptic sinus and the elliptic integral of the third kind
have to be evaluated by complicated numerical cal-
culations. Direct numerical integration is the most
popular exact method for investigation of frequency
conversion processes. In the same time for prelimi-
nary estimation purposes there is a need of approxi-
mate analytical formulas that can be used for fast
evaluation of the efficiency of the frequency conver-
sion processes. In this paper we apply for the first

Ž .time approach ‘Low depletion approximation’ LDA
for description of the second-order frequency con-
version processes. LDA was used for the first time
for description of x Ž3.:x Ž3. cascade processes in

w xcentrosymmetric media 11,12 . LDA has advantages
with respect to the known fixed amplitude approxi-

w x Žmation 14 and fixed intensity approximation see
w x .Ref. 2 and the references therein . LDA is the only

approximate method that describes the depletion of
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the fundamental waves that is very important when
one has to obtain analytical formulas for cascade
frequency conversion processes as in our case. Addi-
tional argument for using the LDA approach is that it
is the only approach that gives correct approximate
formulas for the phase shift of the interacting waves.

The details of the derivation of the analytical
formulae with LDA are presented in the Appendix.

3. Third and fourth harmonic efficiency

< < 2Third harmonic efficiency h s b ra for the3v 3 10
Ž .device shown in Fig. 1 a at not very big input

Ž .intensity, as found with LDA see the Appendix is
given by the following expression:

22 2 2h s s s a L L 1y s s a LŽ . Ž .3v 5 2 10 2 1 1 2 10 1

= 2 2 2sinc Q L sinc Q L sinc Q L ,Ž . Ž . Ž .2 1 2 1 3 2

4Ž .

where

Q2 s2s s a2 qDk 2r4, 5.1Ž .2 1 2 10 2

Q2 ss s a2 qs s s s ys s a4 L2Ž .3 4 5 10 2 5 3 2 4 1 10 1

Dk 2
32=sinc Q L q . 5.2Ž . Ž .2 1 4

Ž .Eq. 4 allows to find the efficiency of the THG
process and the optimal relative length of the two
grating for not so big input intensity that correspond
to s a LF1.2. As a guide we would like to note1 10

that s a Ls1.2 corresponds to input intensities1 10

equal to 0.4, 15, 12.7 and 4 MWrcm2 for GaAs,
KTP, LiTaO , LiNbO , respectively. For higher in-3 3

put intensities the efficiency of THG can be calcu-
Ž . Ž .lated by direct integration of system 1 and 2 . For

the numerical evaluation with the analytical formulae
Ž . Ž .and the numerical integration of systems 1 , 2 and

Ž .3 performed in this work we assumed that the
ratios between all s correspond to an experimentj

with l s1.55 mm in one of the crystals KTP,1

LiNbO or LiTaO . The values of f used in this3 3 j
Ž . Žwork f , f , f , f , f s 0.98, 0.96, 0.91, 1.12,2 3 4 5 6

.1.31 does not deviate from the exact values of f forj

any of the considered crystals with more than 1%
Ž .only for f the deviation is 3% .6

Ž .The validity of Eq. 4 is found by direct compari-
son with the results obtained from exact numerical

Ž . Ž . Ž .integration of systems 1 and 2 . In Fig. 2 a is
shown the dependence of h as a function of the3v

normalized length of the first grating L rL in case1

of exact phase matching for both interactions. It is
seen that LDA can be applied for fundamental input
amplitudes up to s a Ls1.2. For these input lev-1 10

Ž .els when m :m s1:1 the conversion into third1 2

harmonic is close to 40%, that is bigger than most of
the published experimental results.

Ž .The dependencies shown in Fig. 2 a and Fig.
Ž .2 b plotted for exact phase matched conditions show

that the optimal relative lengths of the two gratings
depend not only on the magnitude of the input
fundamental field but also on the order of the QPM
gratings. When the two QPM gratings of the fre-
quency tripler are with one and the same order and
the normalized input amplitude s a L is not too1 10

high the optimal length of the first grating is ;0.54
Ži.e. the two grating have approximately the same

.lengths and remains the same for these magnitudes
of the input fundamental field. If, however, the ratio
of the orders of the two gratings is m :m s1:3 the1 2

optimal length of the gratings strongly depends on
the magnitude of the input fundamental field. The
higher is the input field the shorter should be the first
grating. It is clear that the optimization of the length
of the gratings is particularly important when the two
QPM gratings are not the same order. In this case the
optimization of the length of the gratings can double
the conversion efficiency with respect to the case of
equal length gratings i.e. the efficiency that corre-

Ž .sponds to L rLs0.5 see also Fig. 5 .1
Ž .Fig. 2 c shows the dependence of third harmonic

efficiency at higher values of normalized input am-
Ž .plitude s a L)1.5 . At this power level the de-1 10

pendence of h on the relative length of the first3v

grating is more complicated and has two maxima.
The optimal relative length of the first grating is
reducing with the increase of the fundamental field
amplitude. This behavior can be explained by noting
that the process of THG in the second part of the
crystal require optimal ratio for the amplitudes of the
fundamental and the second harmonic field. So, at
higher values of the input amplitude, the first grating
should be shorter in order to prevent strong depleting
of the fundamental wave.
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Fig. 2. Third harmonic efficiency against the relative length of the
grating for SHG calculated for the case of exact phase matching
for both interactions. The parameter is s a L, the normalized1 10

Ž .input amplitude: a both parts of the crystal are patterned with I
order QPM gratings. The solid line corresponds to the numerical

Ž . Ž .solution of system 1 and 2 ; the dotted line represents the
Ž . Ž .approximate solution obtained by LDA approach, Eq. 4 ; b the

first parts of the crystal is patterned with I order QPM grating, the
second one with III order QPM grating; the dashed line connects

Ž . Ž .the maxima of the curves; and c the same as a , but for
s a L)1.5.1 10

Fourth harmonic efficiency of the converter shown
Ž .in Fig. 1 b can be calculated with the use of follow-

ing approximate analytical formula

b2
4

h s4v 2a10

22 3 2 4 2s s s a L L sinc Q L sinc Q L ,Ž . Ž .Ž .2 4 10 2 1 2 1 4 2

6Ž .
where

Q2 s2 s 2s s a4 L2 sinc2 Q L qDk 2r4.Ž .Ž .4 2 4 6 10 1 2 1 4

Ž .The range of the validity of approximation 6 is
the same as in the case of THG, s a LF1.2. For1 10

higher input values we used exact numerical solution
Ž . Ž .of systems 1 and 3 . The result of the calculated

conversion into fourth harmonic as a function of the
relative length of the first grating is shown in Fig.
Ž . Ž .3 a and Fig. 3 b . The behavior is the same as for

the case of third harmonic generation: constant opti-
mal ratio for the two gratings when m :m s1:1 and1 2

reduction of the ratio L rL when m :m s1:3. It is1 1 2

important to note that, when the two QPM gratings
are the same order, the optimal ratio L rL is 0.61

Ž .and, as it is seen from Fig. 3 c , remains approxi-
mately the same at higher values for the fundamental
field. This is in contrast with the behavior of the

Žsame dependencies in the case of THG see Fig.
Ž ..2 c .

It is interesting to define if such double-grating
converters can be used with tunable lasers, to deter-
mine their wavelength and temperature acceptance.
For this reason we investigated the conversion effi-
ciency into third harmonic for two converters made

Žfrom LiTaO and LiNbO with parameters given in3 3
.Table 1 as a function of the input wavelength and

the temperature.
Fig. 4 shows the conversion efficiency into third

harmonic when the fundamental frequency and the
temperature are both deviated from the point of

Ž .maximum conversion l ,T . The calculations were1 0

made for the fixed normalized input amplitude
s a Ls1.4 and the ratio between the length of the1 10

two gratings L rLs1.083. The wave vector mis-1

match parameters Dk and Dk were calculated2 3

with the temperature dependent Selmier equations
w x w xtaken from Ref. 16 for LiNbO and from Ref. 153

for LiTaO .3
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Fig. 3. Fourth harmonic efficiency against the relative length of
the grating for SHG as obtained by numerical solution of the

Ž . Ž .systems 1 and 3 in the case of exact phase matching for both
interactions. The parameter is s a L, the normalized input fun-1 10

damental amplitude. The dashed line connects the maxima of the
Ž .curves: a both parts of the crystal are patterned with I order

Ž .QPM gratings; b the first parts of the crystal is patterned with I
order QPM grating, the second one with III order QPM grating;

Ž . Ž .and c the same as a , but for s a L)2.1 10

As can be seen from the figures, LiTaO is3

suitable for tripling the frequency of tunable pump-
ing sources. One double-grating structure with fixed
periods in both parts can be used to convert into
third harmonic in wavelength region wide as much
as 50 nm. In order to keep the phase matching
conditions satisfied, the increase of the pumping
wavelength require increase of the temperature. Sin-
gle double-grating structure made on the base of
LiNbO crystal can be used in wavelength region3

wide 16 nm, that is three times less than in LiTaO .3

The insets in the figures illustrate the magnitude of
the temperature and wavelength acceptance of the
converters designed with the parameters listed in
Table 1. As seen the calculated temperature and

Žwavelength tolerances Dls1.5 and DTs108 for
.LiTaO and Dls1.1 nm and DTs98 for LiNbO3 3

are easy to satisfy in comparison with the tolerance
of the angle phase matched converters.

The dependence of the conversion coefficient h3v

on the input power is shown in Fig. 5. The calcula-
tions are done for LiTaO as nonlinear media of the3

double-grating frequency converter. For comparison
on the same graph is shown the efficiency when
Fibonacci grating is employed. As we discussed in
the introduction, nonlinear element with Fibonacci
grating is an alternative approach for generation of
third or fourth harmonic in single nonlinear crystal
w x6,7 . Fibonacci QPM grating is constructed from
two blocks A and B. Each block consists two layers:
the first one has x Ž2. with positive sign and the
second one has x Ž2. with negative sign. The consec-
utive disposition of the blocks follows the rule S sj

S rS ; jG3, where S sA, S sAB. The curvejy1 jy2 1 2

shown in Fig. 5 is calculated for the LiTaO sample3
w xdiscussed in the publication 6,7 by numerical solu-

w xtion of the equations 3,17 :

d B1
) )syis B B y is B B , 7.1Ž .3 3 2 1 2 1d z

d B2
) 2syi2s B B y is B , 7.2Ž .3 3 1 1 1d z

d B3
syi3s B B . 7.3Ž .3 1 2d z

Ž .For the calculation with system 7 following values
for the nonlinear coupling coefficients were adopted
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Table 1
Parameters for the calculations presented in Fig. 4

Ž2. 2Ž . Ž . Ž . Ž . Ž . Ž .Crystal l mm T 8C m :m L mm L mm d pmrV P MWrcm1 0 1 2 2 3 33 in

aLiTaO3 1.55 150 1:1 20.238 7.636 15 17.3
bLiNbO3 1.55 100 1:1 18.97 6.806 27 5.3

a w xRef. 15 .
b w xRef. 2 .

w xs s0.546s and s ss r3 6,7 . The curves1 0,1 3 1

representing three different double-grating structures
Ž . Ž .are calculated by solving systems 1 and 2 .

As can be seen from Fig. 5 the optimization of the
ratio of the length of the gratings is very important

Fig. 4. Third harmonic efficiency of a monolithic double-grating
Ž .frequency converter made from LiTaO crystal a and LiNbO3 3

Ž .crystal b as a function of the temperature and the deviation
l -l from the central wavelength l s1.55 mm. The normal-1 1,0 1,0

ized input intensity is s a Ls1.4. The length of the crystal1 10

Ls1 cm. The other parameters are given in Table 1. The insets
illustrate the temperature and the wavelength acceptance.

factor for the double-grating elements with different
Žorders QPM in both part of the crystal compare the

dotted and dash–dotted lines that are for ratios L rL1

s0.5 and L rLs0.3, respectively. Fig. 5 demon-1

strates also that the generation of third harmonic in
double-grating structures is more efficient than with
crystals with Fibonacci gratings. This result does not

w xsupport the conclusion presented in Ref. 6 that the
‘Fibonacci’ method for single crystal THG is almost
one order of magnitude more efficient than the dou-
ble grating frequency converter.

4. QPM gratings for LiNbO , LiTaO , KTP and3 3

GaAs

In this section we present the grating periods for
four different crystals. The formula for the dispersion

Fig. 5. Comparison of the third harmonic efficiency of three
monolithic devices made from LiTaO crystal with length Ls13

cm for the case of exact phase matching for both interactions.
Solid line: double-grating element with m s1, m s1 and1 2

L rLs0.54. Dotted line: double-grating element with m s1,1 1

m s3 and L rLs0.5. Dash-dotted line: double-grating ele-2 1

ment with m s1, m s3 and L rLs0.3. Dashed line: nonlin-1 2 1
w xear crystal patterned with Fibonacci optical superlattices 6,7 .
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of the index of refraction are taken as follow: for
w x w xLiNbO from Ref. 16 , for LiTaO from Ref. 15 ,3 3
w x w xfor KTP from Ref. 2 , and for GaAs from Ref. 18 .

The input polarization is along z axis for all crystals
with exception for the GaAs for which the input

w x Ž . Ž .polarization has 111 direction. Fig. 6 a – d shows
the dependence of grating periods L , L and L ,2 3 4

respectively, for second harmonic, third harmonic
and fourth harmonic generation, as a function of the
input wavelength l .1

With the contemporary level of the technique of
production of QPM gratings it is very difficult grat-
ings with periods below 4 mm to be achieved. For
the input wavelengths for which the first order QPM
grating is below 4 mm, third order QPM grating
should be used. However, as it was shown in part III,

the use of third order QPM grating in the second part
of the crystal will lead to lower conversion into third
harmonic for one and the same input power. But by
choosing the optimal ratio of the grating lengths the
reduction of the conversion efficiency can be par-
tially compensated. The periods of third order of
QPM gratings that allow phase matching of the
processes 2vqvs3v and 2vq2vs4v are also

Ž . Ž .shown in Fig. 6 a –Fig. 6 d .
For certain fundamental wavelengths the two grat-

ings of the devices shown in Fig. 1 have one and the
Ž .same period i.e. L sL or L sL . At these2 3 2 4

points the two processes are simultaneously phase
matched in the whole crystal. Such double-phase
matched schemes can be used not only for obtaining
efficient third and fourth harmonic generation, but

Fig. 6. QPM grating periods L , L and L for the processes second harmonic of the fundamental frequency vqvs2v, sum frequency2 3 4
Ž . Ž . Ž .mixing vq2vs3v, and frequency doubling of the second harmonic radiation 2vq2vs4v respectively: a LiTaO ; b LiNbO ; c3 3

Ž .KTP; and d GaAs.
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w xalso for obtaining large nonlinear phase shift 17,19 ,
w xpolarization switching 20 and multidimensional

w xsolitary waves 21,22 .

5. Conclusion

The optimal conditions for third and fourth har-
monic generation in nonlinear crystals with double-
grating QPM patterns was investigated theoretically.
It is found the optimal length of the two gratings. At
relatively low input power the output parameters of
this types of the frequency converters can be cor-
rectly described by the analytical formula obtained in
the frame of the low depletion approximation. It is
shown that this double grating frequency tripler is
more efficient than the method of frequency tripling
in crystals with Fibonacci gratings. We believe that
the results obtained in this work will allow to con-
struct compact diode pumped frequency converters.
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Appendix A

The aim of this Appendix is to outline the deriva-
tion of the analytical formula for description of the
double-grating frequency converters. For this pur-

w xpose we extend recently introduced in Refs. 11,12
Ž .low depletion approximation LDA by applying this

approach for description of such second-order pro-
cesses as second harmonic generation and sum fre-
quency mixing.

A.1. SHG in the first part of the crystal

First of all let us apply the LDA to the case of
Ž .second harmonic generation. System 1 can be

rewritten for the real amplitudes and phases of the
interacting waves:

da1
ss a a sinF , A1.1Ž .1 2 1 1d z

da2 2sys a sinF , A1.2Ž .2 1 1d z

dw1
sys a cosF , A1.3Ž .1 2 1d z

dw a2
2 1

sys cosF , A1.4Ž .2 1d z a2

where

F sw y2w yDk z .1 2 1 2

Ž .The two invariants of system 4 are:

s s1 12 2 2 2 2a q a sa q a su , A2Ž .1 2 10 20
s s2 2

2 2s a a cosF qDk s a r2 s s sG , A3Ž .( (1 1 2 1 2 1 2 1 2

where a are the input amplitude for the interactingj0

wave. In case of no second harmonic seeding Gs0
and u2 sa2 .10

Ž .Expressing sinF from A3 and substituting in
Ž .A1.2 we obtain

2 22 4 6da a Q a a2 2 2 2 23 2 2sy2 a s y q s , A4Ž .10 2 1( 2ž / ž / ž /d z a a aa10 10 1010

where

Dk 2
22 2Q s2s s a q .2 1 2 10 4

Ž .6For relatively low conversion the term a ra2 10
Ž .can be neglected and integration of A4 leads to:

a s s a2 L sinc Q L , A5.1Ž . Ž .Ž .2 2 10 1 2 1

2 2 2a sa 1y s s a L sinc Q L . A5.2( Ž . Ž .Ž .1 10 1 2 10 1 2 1

The output phases w and w for the fundamental1 2

and second harmonic wave at the interface between
Ž .the two gratings are obtained by integration of A1.3
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Ž .and A1.4
Dk L s2 1 1

w L sw yŽ .1 1 10 2 s2

atan 1y2 M tan Q LŽ .(Dk s 2 2 12 1
q .

2 s Q 1y2 M(2 2 2

A6.1Ž .
Dk L2 1

w L s , A6.2Ž . Ž .2 1 2
where

1 s 2a2
2 10

M s .2 22 Q2

Ž . Ž .The expressions A5.1 and A5.2 describe second
harmonic amplitude and the fundamental wave am-
plitude as a function of the input field, length of the
grating and the wave vector mismatch. It is interest-

Ž .ing to note that Eq. A6.1 describes the stepwise
behaviour of the fundamental wave nonlinear phase
shift as a function of the input field and the length of
the media.

Ž . Ž . ŽThe amplitudes and phases a L , w L , jsj 1 j 1
.1,2 will be used as input waves for the calculation
Ž .third fourth harmonic efficiency in the second part

of the crystal.

A.2. Sum frequency generation in the second part of
the crystal

Ž .System 2 when written separately for the ampli-
tudes and the phases of the interacting waves has the
form:
db1

ss b b sinc , A7.1Ž .3 3 2d z
db2

ss b b sinc , A7.2Ž .4 3 1d z
db3

sys b b sinc , A7.3Ž .5 1 2d z
dc b b1 3 2

sys cosc , A7.4Ž .3d z b1

dc b b2 3 1
sys cosc , A7.5Ž .4d z b2

dc b b3 1 2
sys cosc , A7.6Ž .5d z b3

where csc yc yc yDk z. The invariants of3 2 1 3
Ž .system 7 in the case of no third harmonic wave at

the entrance of the second part of the crystal are:

s b2 qs b2 ss a2 ,5 1 3 3 5 1

s b2 qs b2 ss a2 , A8.1Ž .5 2 4 3 5 2

Dk3 2b b b coscq b s0, A8.2Ž .1 2 3 32sb

where a and a are output amplitudes for the1 2

fundamental and second harmonic wave at the end of
the first part of the crystal.

Ž . Ž .After integration of A7.1 – A7.3 we obtain for
the amplitude of the fundamental, second and third
harmonic wave at the output of the crystal

s5
b L s a a sin Q L , A9.1Ž . Ž . Ž .3 2 1 2 3 2Q3

b2 L sa2 1ys s a2 L2 sinc2 Q L ,Ž . Ž .Ž .1 2 1 3 5 2 2 3 2

A9.2Ž .

b2 L sa2 1ys s a2 L2 sinc2 Q L , A9.3Ž . Ž . Ž .Ž .2 2 2 4 5 1 2 3 2

where

Dk 2
32 2 2Q sa s s qa s s q .3 1 4 5 2 3 5 4

ŽŽ . Ž .. Ž . Ž .Combining A9.1 – A9.3 and A5.1 , A5.2 is
Ž .obtained the Eq. 4 for the efficiency of the THG

process.

A.3. Fourth harmonic generation in the second part
of the crystal

Performing the same transformations as in part
A.1 we obtain for the amplitudes of the second and
fourth harmonic wave at the output of the second
part of the crystal:

2 2 2(b L sa 1ys s a L sinc Q L A10.1Ž . Ž . Ž .2 2 2 6 4 2 2 4 2

b L ss a2 L sinc Q L , A10.2Ž . Ž . Ž .4 2 6 2 2 4 2

where

Dk 2
42 2Q s2s s a q .4 4 6 2 4

Ž .Eq. 6 is obtained by combining expressions
Ž . Ž . Ž .A10.1 – A10.2 and A5.1 .
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