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Abstract

The effect of an intensity dependent change of the polarization state of the fundamental wave involved in imbalanced
type II frequency doubling is considered. The effect is described and derived by us as analytical formulae expressed in terms
of elementary functions. We show (i) that a type II second harmonic generation crystal can be considered as a wave plate

with intensity dependent retardation and (ii) that the system

polarizer—type II frequency doubling crystal-analyser’’ has

strong pulse shortening and self-induced transparency. © 1997 Elsevier Science B.V.

1. Introduction

Intensity dependent rotation of the polarization of the
fundamental wave associated with type II second harmon-
ics generation (SHG) at exact phase matching condition
has been considered in Refs. [1,2]. The effect of the
polarization rotation considered in Refs. [1,2] is connected
with the different intensity dependent transmissions of the
two fundamental waves, which relative phase remains
constant. An all-optical transistor /switch based on this
polarization rotation effect was proposed and demon-
strated.

The change of the polarization state due to non-linear
phase shift (NPS) in a crystal for type I SHG is predicted
in Ref. [3]. There, by numerical analysis, is shown that
devices based on this process may possess self-induced
darkening and self-induced transparency effects. The effect
of the change of the polarization state as a result of the
non-linear phase shift due to y‘*: @ cascading in type Il
nearly phase matched SHG crystals has not been described
in the literature yet.

! E-mail: ibuch@ani.phys.uni-sofia.bg.

Most of the analysis of the NPS and of all-optical
processing associated with it have been done numerically
[4-11]. Some of the groups obtained expressions for the
NPS that include Jacobean elliptic functions {12—14], that
also have to be evaluated numerically. The analytical
approximation of fixed intensity for the fundamental wave
[15-17] correctly describes NPS only for low input intensi-
ties (second harmonic conversion coefficient less than
30%). The analytical formulae expressed in trigonometric
functions proposed in Refs. [18,19] for the description of
NPS only in type I SHG crystals are valid practically for
the same range of input intensities as fixed intensity
approximation. According to our knowledge there are no
analytical formulae expressed in terms of elementary func-
tions describing the amplitudes and NPS of the interacting
waves at high input pump intensities. The existence of
such formulae will be of great help for studying the
phenomena connected with the cascade type NPS and for
optimization of optical devices based on cascading non-lin-
ear optical effects.

In this paper we studied the effect of an intensity
dependent change of the polarization state in quadratic
media suitable for imbalanced type II frequency doubling.
It is shown that the non-linear media can be considered as
an induced wave plate. The analytical expressions show
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that the retardation of this wave plate has a stepwise
dependence on the input intensity. Additionally, it is shown
that the system ‘‘polarizer—crystal for type II SHG-
analyser’’ has intensity dependent transmission and pulse
compression capability.

2. Analytical formulae for the NPS

In this section we derive analytical formulae expressed
in terms of elementary functions for the intensities and the
phases of the fundamental waves involved in type II
interaction for SHG. The ratio of the input intensities of
the two fundamental waves can take any value, i.e. taken
into consideration includes imbalanced type Il interaction
as well. As it is shown in Refs. [20-23] this type of
interaction is very attractive from the point of view of
construction of low power all-optical switching devices. It
is not necessary to study type I interaction separately,
because it is equivalent to the type II case with symmetri-
cal input [14].

We assume that the three interacting waves are linearly
polarized plane waves. The stationary amplitude equations
in the slowly varying envelope approximation assuming
zero absorption for all interacting waves have been derived
following the same approach as in Ref. [24]:

dA, )

P —icA;Ajexp(—1Akz),

dA,

ryaie —i0AyA] exp(—iAkz), (1)
dA

> = —i20A, A,exp(1Akz),

dz

where Ak = k; — k, — k, and o is the non-linear coupling
coefficient. The subscripts ‘1’ and ‘2" denote the funda-
mental waves and the subscript ““3’’ denotes the second
harmonic wave. The complex amplitude A (z) incorpo-
rates both the real amplitude and the phase of each wave
A (D) =a(explig,(2)), g =1.2,3. Input values for the
phases and the amplitudes of the two orthogonally polar-
ized fundamental waves, are ¢,(0), ¢,(0), a,(0) and a,(0).
Let us consider that wave ‘‘1”’ input intensity is higher
than input intensity of wave **2”* (&}(0) = a%(0)), then the
ratio of the intensities r = a3(0)/a#(0) < 1.

For the case of a4(0) =0 the equation system (1) has
the following invariants:

2a} +a3=2a:(0), (j=12) )
ga,a,a;c08®P + Akal =0, 3)

where @=¢;— ¢, — ¢, —Akz=0
It is well known that the solution of the system (1) for

the amplitudes of the fundamental waves is expressed by
the Jacobian elliptic sinus sn((z/®)|m) [24]:

a2(z) = aX(0) - ua? snz(

) G120 @

z
@
where the parameters are

, U~ Vo2 —4u Ak?

@' =, v=20%a(0)(1+r)+ -

u=4dg'al(0)r, m=ue*

In order to obtain an analytical formula for the NPS
expressed in terms of elementary functions, the square of
the elliptic sinus must be replaced by a suitable approxima-
tion. For the case of Ak # 0 the following approximation
for sn?((z/®)lm) can be used:

{5 )

+m*F Sinz(wﬁm—))’ (5)

K(m) is the complete elliptic integral of the first kind and
it can be calculated with good accuracy by [25]:

K(m)=[ po+pi(1 —m) +py(1 — m)’]

~ [0+ 0:(1 = m) + ay(1 — my’|in(1 = m)
+ &(m),
po=1.3862944, p,=0.1119723, p,=0.0725296;
go=0.5, gq,=0.1213478, ¢, =0.0288729;

e(m)<3x10°.

F is a coefficient that depends on the intensity ratio r. Its
value will be discussed later.

The validity of the approximation (5) was verified for
F=0.25 and different values of m. For m < 0.85 the
deviation from the exact sn*((z/z)|m) function does not
exceed 5% independently of the value of AkL. The values
of m up to 0.85 correspond to the ratios between the
intensities of the two fundamental waves r < 0.85.

As a result for the intensity of the fundamental waves
we have:

@ (2)

=a}(0){1 —l\’j[sinz(—;—r-lcz;) +m2Fsin2(Trl:h )]}
(6)

where N, = Vmr and N, = ym/r. The depletion and the
reconstruction of the fundamental waves occur with period
21, where I, = ® K(m). The coherence length depends

coh?
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not only on the phase mismatch Ak, but also on input
intensities a,(0) and a,(0).

The imaginary part of the system (1) gives equations
for the phases of the two fundamental waves

2d(’pf
at—=
/dz

Now, with the use of the invariants (2) and (3) one
obtains

= —oaa,a;cos® (j=1.2). @)

de, 3k

dz 2

(®)

1)

Using (6) and applying the substitution ¢ =
tan(wz/21.,) we find for the output phase of the two
fundamental waves at the output of the non-linear media

AL Aklgge, .p (E7+1)dE
¢ (L) = ¢,(0) — ——+ Lo
2 0 §7+ b+

)

where

2—N(1+4m*F)
p=tan(ml/2ew). b= ——T
J

-1
o=(1-N§)
L is the length of the non-linear media.

The solution of (9) depends on the values of b; and c;:
(a) when b} > 4c;

‘Pj(L)
AkL Akl
= (0) - — + ——— L —
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Fig. 1. Non-linear phase shift A@$*") of the weak (a) and A p{N"
of the strong (b) wave versus normalized input amplitude oa,(0)L
of the strong wave for AkL=10.3 rad and different input ratios
r=a3(0)/a?(0). The solid line is the analytical solution (for-
mulae (10a), (10b) derived in this work and F is defined by (11)).
The dashed line represents the direct numerical solution of the
system (1).

In (10) the following notations have been used

KO =4 = b7 —4c,). kP =6+ b7 - ac;),

1—Je,

., V&i
dj=v/2v6'j —bj, fj:ﬁ
JY T

The results of the comparison of the NPS, Ag" =
@ L) — ¢;(0), for both waves obtained by direct numerical
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solution of the system (1) and by the use of the formulae
(10a), (10b) are presented in Fig. 1a and 1b. Good agree-
ment between the numerical and the analytical approach
can be seen from the figures. The accuracy of the analyti-
cal data in comparison with the exact numerical data
depends on the parameter F and in the case we can use
expression

F=0.66(r*+1)—1.064r (re[0.1,1]) (1)

is less than 5%. If one takes F to be constant equal to 1/4
the accuracy is not more than 20%. We have to point out
that the NPS of the weak wave ‘2" (shown in Fig. 1a) is
the parameter of interest for most already proposed all-
optically switching devices, because the weaker wave gets
higher NPS [16,20-23]. The proposed formulae can easily
be extended for a description of the process of NPS of the
waves involved in sum frequency mixing interactions.

We would like to note that the middle of each plateau
of the curves shown in Fig. la are the points of full
reconstruction of the pump intensities at the output of the
non-linear media. The first point of the full intensity
reconstruction corresponds to the fundamental intensities
for which L=2{_,. Next, the points of full intensity
reconstruction occur at higher intensities for which L=
2ni,,, (n integer).

The formulae (10a), (10b) were used to study the effect
of an induced change of the polarization state in SHG
crystals with type II interaction as presented in the next
section.

3. Intensity dependent change of the polarization state

Let us consider a crystal for SHG oriented such that the
normal N to the plane formed by the wave vector k and
the crystal axis is at angle « with respect to the input
polarization (Fig. 2). If @ =0 there is only wave “‘1’” in
the crystal, if a = 45° the amplitudes of the orthogonally
polarized waves ‘‘1’’ and “*2’’ are equal. After passing
through the crystal the waves ‘1’ and ‘2"’ collect both

N

input output
polarization Type I SHG crystal polarization

Fig. 2. Schematic drawing of the considered arrangement for
obtaining an intensity dependent change of the fundamental wave
polarization state.
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Fig. 3. Non-linear phase shift of the weak (dashed line) and the
strong (dotted line) wave as a function of the input angle « at the
point of first full reconstruction of the fundamental waves. Input
intensities of the strong (solid line) and the weak (marked solid
line) waves are also shown. Normalized mismatch AkL = 0.3 rad.

linear Ap™™ and non-linear AN phase shifts. The

polarization state after the crystal will depend on the
transmittance of the two waves and on the sum of the two
phase differences

F=T+ T =A@t™ — AN 4 A gL — AL,

I'l v is easy to compensate by inserting an additional
phase corrector or by a proper choice of the non-linear
media length making it I}y = 2a7 (n integer). Then the
change of the state of the polarization will depend only on
Iy, that can be calculated with formulae (10).

In general, the output polarization will be elliptical with
the large semiaxis rotated at an angle & with respect to the
input polarization

‘o‘=a-~%arctan—zfgioﬁ—2 cosl. (12)
picos‘a — pssin‘w

In this formula p, and p, are amplitude transmission
coefficients for the two fundamental waves p; =
a(L)/a;0). The amplitudes @,(L) have to be calculated
with expression (6). The semiaxes * and *‘b”’ are

defined by

1)

a

a* = pj cos’@ cos?( @ — 8) + p3 sin’a sin’(a — §)
+3p, pysin2asin(2a—28)cosl,
b%=picostasin’(a—8) + p; sina cos’( @~ 8)
—1p, pysin2asin(2a—28)cosT . (13)
For input intensities that yield Iy < 7 the output
light is left elliptical polarized if Ak tan2 « > 0 and right

elliptical polarized if Ak tan2a < 0. Since the transmis-
sion coefficients p, and p, and I'y, strongly depend on
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Fig. 4. Non-linear retardation I'y; of the plate for type II SHG
crystal as a function of normalized input intensity oa, L=
o Lya; (0)+ a3(0) for input angle o = 40° and different values
of the normalized mismatch AkL. Full circles are points of the
first full reconstruction of the amplitudes of the fundamental
waves at the output of the crystal. Open circles are points of the
second full reconstruction and open squares are points of the third
full reconstruction.

input intensities, the rotation angle & is intensity depen-
dent as well.

The possibility of the effective change of the polariza-
tion state of the input fundamental wave is a result of the
large difference obtained from the NPS of the weaker and
the stronger wave at relatively small disbalance of the
input amplitudes of these two waves. This is illustrated in
Fig. 3 where we show the dependence of AN and
A )" as a function of the angle @ at the point of the first
full reconstruction of the “‘1” and *‘2°” waves (L = 2/ ).
It is seen that there is no correspondence between the
disbalance of the input intensities and the disbalance of the
obtained NPS. For angles « below 40° (r ~ 0.7) the phase
difference 'y = A@Yr — ApM is practically constant
and equals to 3 rad.

The crystal for SHG for type II interaction oriented at
a = 40°-43° can be considered as a wave plate with a
retardation effect that depends on the input intensity and
the phase mismatch. If we are interested in the pure effect
of the change of the polarization state of the fundamental
wave we have to consider the condition for which the
intensity of this wave is reconstructed, i.e. L=2nl_ (n
integer).

With a type II crystal for SHG, at the first point of full
reconstruction of the fundamental waves, a retardation can
be obtained in the effect up to 7. This is illustrated in Fig.
4, where the phase difference Iy =A@l — At is
shown as a function of the normalized input amplitude.
The points of full reconstruction of the fundamental wave
are marked. With a proper value of the mismatch Ak and
the input intensity, the value of the retardation can be
made to be equal to any value between O and 7, this

A, N
w / (0] @
20
P Type II SHG crystal PC A F

Fig. 5. Non-linear frequency doubling polarization interferometer
with type IT SHG crystal. P — polarizer, PC — phase corrector, A
— analyser, F — filter (harmonic stop).

means that the SHG crystal has the behaviour of a wave
plate with variable retardation and can be called
“‘frequency-doubling wave plate’’.

Additional analytical investigations of the output polar-
ization state for small values of the mismatch Ak (Ak =
0.3) showed that the eccentricity is in the range 0.9-1, i.e.
the output wave remains predominantly linearly polarized
[26].

4. Self-induced transparency and pulse shortening

On the basis of what has been considered in the previ-
ous section by induced change of the polarization state we
propose a modification of the non-linear frequency dou-
bling polarization interferometer (NFDPI) as depicted in
Fig. 5. In contrast to the device proposed in Ref. [3], here
the crystal is for type II interaction for SHG. The polarizer
P and the analyser A have crossed or parallel polarization
planes. The linear phase shift is supposed to be compen-
sated with the phase corrector PC, I' = 2n7r, as discussed
in Section 3. Then I'=1I"; .

The two orthogonally polarized fundamental waves in-
terfere at the analyzer plane. The result of this interference
is called by us transmission of the NFDPI and depends on
the induced phase shifts A M- and A ¢

With formulae (10a), (10b) obtained in Section 2 we
calculated the phase difference I'= Iy = (¢,(L) —

041

02+

NFDPI transmittance

0.0
0

Fig. 6. Transmittance of the system shown in Fig. 5 versus
normalized input amplitude oa,, L for parallel (dashed line) and
perpendicular (solid line) planes of the polarizer and the analyser.



178 L. Buchvarou et al. / Optics Communications 141 (1997) 173179

L=~

—

= T T T T T
g ol

B 12

2

= 9L

[=]

3

£ 6F

=

Q

S s

o

E .

5 0 ] .

= -2 -1 0 1 2

normalized time

Fig. 7. Single pass pulse shortening of Gaussian pulse with the
system shown in Fig. 5. Dashed line — input pulse, solid line —
transmitted pulse. Input angle « =40°. Normalized mismatch
AkL=10.3 rad.

©,(0)) — (@,(L) — ¢(0)), which is necessary for the cal-
culation of the transmission T=|A_,|>/|A, > of the
NFDPI,

TA=§(p02+p§—2pope cosI")sin*(2a),
T,= p; cos’a + p} sin®a + 3 p, p. sin®(2a)cosI".  (14)

In Fig. 6 we plot the transmission of the system shown
in Fig. 5 for a=40° and AkL=03. It is seen that,
depending on the mutual arrangement of the polarizers, the
system ‘‘polarizer—type II SHG crystal-analyser’” has
strong self-induced darkening and self-induced trans-
parency effects. The critical normalized amplitude for
self-induced transparency is almost twice less in compari-
son to the correspondent critical power for the similar
device that uses type I SHG crystal [3]. Additional reduc-
tion of the critical amplitude can be obtained for higher
values of AkL, but this will result in less contrast.

The device shown in Fig. 5 has also the capability to
shorten input pulses. When the NFDPI is arranged for a
self-induced transparency regime strong shortening of the
pulses can be obtained (Fig. 7). It is seen that a single pass
traverse through the system results in 33% compression of
the input Gaussian pulse. This result is obtained under
assumption that there is no non-stationary effects inside
the non-linear media. The length of the media is short
enough, so the three pulses (two fundamental and one
generated) remain approximately overlapped.

It is clear that the two capabilities of the NFDPI, the
pulse shortening and self-induced transparency effect at
relatively low power (we calculated 60 MW /cm? for 10
mm long KTP crystal), make this device suitable for
mode-locking in lasers. At the same time we understand
that there are restriction effects that can limit the applica-
tion of this device as mode locker in femtosecond lasers:
the group velocity mismatch [27] and the Liot effect.

5. Conclusion

In summary here we showed that near phase matched
type II SHG crystals can be used as *‘frequency-doubling
wave plates” with intensity dependent retardation. The
devices that employ such kind of wave plates show strong
self-transparency, self-darkening and pulse compression
effects. Possible applications of such kind of devices may
be mode-locking, all-optical switching and sensor protec-
tions.

The system “*polarizer—type I SHG crystal-analyser”
described here can be realized in a way so that light
traverses twice the SHG crystal. The system **polarizer—
SHG crystal-mirror’” will have the same properties but at
lower input intensities.
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