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Two-color multistep cascading and parametric soliton-induced waveguides
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We introduce the concept divo-color multistep cascadinfpr vectorial parametric wave mixing in optical
media with quadrati¢second-order ox(?) nonlinear response. We demonstrate that the multistep cascading
allows light-guiding-light effects with quadratic spatial solitons. With the help of the so-called “almost exact”
analytical solutions, we describe the properties of parametric waveguides created by two-wave quadratic
solitons.[S1063-651X%99)50511-4

PACS numbes): 42.65.Tg, 05.45.Yv, 42.65.Jx, 42.65.Ky

Recent progress in the study of cascading effects in optitwo-wave quadratic solitons and investigate, analytically and
cal materials with quadraticsecond-order ox(?) nonlinear  numerically, the properties of parametric waveguides created
response has offered new opportunities for all-optical proby quadratic spatial solitons ig® nonlinear media.
cessing, optical communications, and optical solitbhg]. To introduce more than one parametric process involving
Most of the studies of cascading effects employ parametrié’”'y two frequencies, we consider a vectorial interaction of

wave mixing processes with a single phase-matching and, J4Ves with different polarization. We denote two orthogonal

a result, two-step cascading. For example, the two-step cal0larization components of the fundamental frequetidy
cading associated with type | second-harmonic generatiof@V€ (¥1=w) asAandB, and two orthogonal polarizations
(SHO) includes the generation of the second harmomic ( °f the second harmonitSH) wave (w,=2w), asSandT.
+w=2w) followed by reconstruction of the fundamental Then,_a simple m_ulUstep cascading process consists of the
wave through the down-conversion frequency mixipgM) follpwmg steps. First, the FF wawk generates the SH wave
process (& — w=w). These two processes are governed byS via type | SHG process. Then, by down-conversﬁ?&B,
one phase-matched interaction and they differ only in théhe orthogonal FF wavB is generated. At last, the initial FF
direction of power conversion. wave A is reco.ns.tructed by the proces&B-A or AB-S,

The idea to explore more than one simultaneous nearlyp~~A- Two principal second-order processésA-S a(r;gj
phase-matched process, double-phase-matched (DPM) ~B-S correspond towo different componentsf the x
wave interaction became attractive only recenti$,4], for susceptlb'lllty tensor, thus mtr_oducmg addltllonal degrees of
the purposes of all-optical transistors, enhanced nonlinearity/€€dom into the parametric interaction. Different types of
induced phase shifts, and polarization switching. In particuMultistep cascading processes are summarized in Table I.
lar, it was shown[4] that multistep cascading can be The.processes in ro@) of Table I described abov_e a_nd the
achieved by two second-order nonlinear cascading processé@Ultistep cascading introduced in Ré4] are qualitatively
SHG and sum-frequency mixingFM), and these two pro- similar, but the latter involves a th!rd-harmon|q wave.
cesses can also support a novel class of multicolor paramet- 10 demonstrate some of the unique properties of the mul-
ric solitons[5]. The physics involved into the multistep cas- USteP cascading, we discuss here how it can be employed for
cading can be understood by analyzing a chain of parametritdht-guiding-light effects in quadratic media. For this pur-
processes: SHG o+ w=2w)—SFM (0+20=3w) pose, we consider the pnnmpal DPM proceésb_(see Table
—DFM (3w—w=2w)—DFM (20— w=w). The main )] |n.the planar sIab—wavggw_de geometry. Using _the slowly
disadvantage of this kind of parametric processes for appliY@¥ing envelope approximation with the assumption of zero
cations is that it requires nonlinear media transparent up tgosorption of all interacting waves, we obtain
the third harmonic frequency. WA PA

Then, the important question i€an we find parametric 2ik;— + —— + y;SA e 1Akiz=0, (1)
processes which involve only two frequencies but allow us to 9z 2
get all advantages of multistep cascading? this Rapid
Communication, we answer positively this question intro-
ducing the concept ofwo-color multistep cascadingWVe

TABLE |. Possible multistep cascading processes.

) i Principal Equivalent
demonstrate a number of unique features of multistep para-
metric wave mixing that do not exist for the conventional (&) (AA-S, AB-S) (BB-S, AB-S); (AA-T, AB-T)
two-step cascading. In particular, using one of the processes (BB-T, AB-T)
of two-color multistep cascading, we show how to introduce(b) (AA-S, AB-T) (BB-S, AB-T); (AA-T, AB-S)
and explore the concept of light guiding light for quadratic (BB-T, AB-S)
spatial solitons, which was analyzed earlier for Kerr-like spa-c) (AA-S, BB-S) (AA-T, BB-T)
tial solitary waveq 6] but seemed impossible for parametric (d) (AA-S, AA-T) (BB-S, BB-T)

interactions. We find “almost exact” analytical solutions for
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°B _ Therefore, an additional parametric process allows us to
2ik15+ —2+XZSB*e*'AKZZ:O, propagate a probe beam of one polarizatiorameffective
ox

waveguidecreated by a two-wave spatial soliton in a qua-
dratic medium with FF component of another polarization.
. S o Ak 5 iAkuz However, this type of waveguide is different from what has
4|k15+ﬁ+2X1A e'"" 4+ 2x,B%e "¢ =0, been studied for Kerr-like solitons because itdsupled
X parametrically to the guided modes and, as a result, the
physical picture of the guided modes is valid, rigorously
épeaking, only in the case of stationary phase-matched
eams. As a result, the stability of the corresponding wave-
guide and localized modes of the orthogonal polarization it
guides is a key issue. In particular, the waveguide itgedf,

tions and introduce the normalized envelopgss/, andw two-wave parametric solitgrbecomes unstable for< o

; ; A — ~0.2[7].
according to the following relations:A= y,uexp(Bz . . .
—i12AK,2), B=y,v exp(Bz—i/2Ak,2), and In order to find the guided modes of the parametric wave-

_ 1 2 S A_o2 2 guide created by a two-wave quadratic soliton, we have to

7&3W§X_p(2'822)’ wc:u;r]e Tl .tz)é.lxol’ Vzd ¢ 2X5(x1x2) ™ di solve Eq.(4) where the solutiomvy(x) is known numerically
andys = x1Xo, and me fongitudinal an ransver§$ €00rdl- 51y, These solutions have been also described by the varia-
nates are measured in the units Rt=(B—Ak,/2)"* and

B 12 X . tional method[8], but the different types of the variational
Xo=(2o/2ky)™™, respectively. Then, we obtain a system of gngat; used do not provide a very good approximation for
normalized equations,

the soliton profile at alke. For our eigenvalue problert),
the functionwg(x) defines parameters of the guided modes

(92

where y; ,=2k; 0 ,, the nonlinear coupling coefficients,
are proportional to the elements of the second-order susce
tibility tensor, andAk,; andAk, are the corresponding wave-
vector mismatch parameters.

To simplify system(1), we look for its stationary solu-

i&—u+&2—u—u+u*w:0 and, in order to obtain accurate results, it should be calcu-
Iz = 5x>2 ' lated as close as possible to the exact solutions found nu-
merically. To resolve this difficulty, below we suggest an
PV LY “almost exact” solution thatwould allow us to solve ana-
i—+——a;v+yv*w=0, (2) lytically many of the problems involving quadratic solitpns
9z gx? including the eigenvalue problefd).
First, we notice that from the exact resulteat 1 and the
oW 9Pw 1, ., asymptotic result for larger, w~u?/(2a), it follows that
Z'EJF?_QWJFE(U +v9)=0, the SH componenivy(x) of Egs. (3) remains almost self-

similar for a=1. Thus, we look for the SH field in the form
where y=(x./v1), ai1=(8—Ak./2)(8—Ak,/2)"1 and Wo(X) =Wy, sech(x/p), wherew,, and p are unknown yet
—ap (g_(A)i(Zlé)lzl_alqu(gtions %2))(£re th(la gundamerﬁltal parameters. The solution fog(x) should be consistent with

model for describing any type of multistep cascading pro_this choice of the ;hape for SH, and it is defined by the first
cesses of typéc) (see Table )l (linear foru) equation of the syster8). Therefore, we can

First of all, we notice that fov =0 (or, similarly,u=0), takeé u in the form of the lowest guided modejo(x)

the dimensionless modé2) coincides with the correspond- — Um S€CH(x/p), which corresponds to an effective wave-
ing model for the two-step cascading due to type | SHGIUIAE Wo(x). By matching the asymptotics of these trial
discussed earlief1,2], and its stationary solutions are de- functions with those defined directly from EdS8) at small

fined by the equations for realandw and largex, we obtain the following solution:
=y Uo(X)=UmSecR(x/p), Wo(X)=wseck(x/p), (5
—2—u+uw=0, 5
dx ,  awp 4(wp,—1)3 1 ©
u :—1 = il = H

o 1 ® WD YT 2wy P w1
w

Q_QW”L §u2=0, where all parameters are functions @fonly. It it easy to

verify that, for a¢,<a<w, the SH amplitude varies in the

which possess a one-parameter family of two-wave localizef9ion 1.3<wp<2, so that all the terms in Eq6) remain

solutions (ig,w,) found earlier numerically for ang+1,  POSitive. , , ,

and also known analytically for a=1, ug(X) It is really amazing that thg an:_:tlytlcal solutl@ and(6)

= (3\2)secR(x/2)= \2w,(x) (see Ref[2]). providesan excellent app_rommatlofor the prc_>f|les of _the
Then, in the small-amplitude approximation, the equationtwo'wave parametric sohto_ns found numerlcally_. Figures

for real orthogonally polarized FF wawecan be treated as 1(a) and Xb) show a comparison between the maximum am-

an eigenvalue problem for an effective waveguide created b I|tu.des of the F.F and SH components and selecteq soliton
the SH fieldwo(x), rofiles, respectively. As a matter of fact, the numerical and

analytical results on these plots are not distinguishable, and

42y that is why we show them differently, by continuous curves

— +[x Wo(X)— a;Jv=0. (4  and crosses. Fowr<<1, the SH profile changes, but in the
region o>« the approximate analytical solution is still



RAPID COMMUNICATIONS

R5058 KIVSHAR, SUKHORUUKOV, AND SALTIEL PRE 60
T T T * [ T ~It T 40
@ O
30
4 + 1 3 37 i [
E ° ) E—
3 & H
E 3 4 ~~ g 20
] x Rt [a
5
1 , , ] 0
2 4 6 8 10
[+4 b

i
l:';’/j’:‘?’";’;’
i

i
it
i
[
il W’"’I”')"’”l"'/lm i i

T
T
i
i
i
i 'ﬂ’/t i
i
il
i

FIG. 1. Comparison between the numeri@@ntinuous curves
and “almost exact” analytical(crossey solutions for two-wave
(FF, dotted; SH, solidparametric solitons(a) maximum ampli-
tudes,(b) two-wave soliton profile atv=4.
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very close to the exact numerical orgerelative error is less : i
than 1%, for the amplitudes, and it does not exceed 3%, for *- /
the power components. That is why we define the analytical
solution given by Eqe5) and(6) as “almost exact.” Details
of the derivation, as well as the analysis of the casel, FIG. 3. (8 Change of the normalized power in FH,(solid
will be presented elsewhef8]. lines) and SH (v, dotted liney components, which initially consti-
Now, the eigenvalue probler@®) can be readily solved tute a two-wave soliton, and in the guided moste dashed linesat
analytically. The eigenmode cutoff values are defined by ther=2, demonstrating amplification of a guided wave. Evolution of
parametelr, that takes one of the discrete valueéi',‘)= (s the guided wave and effective wavegui@®H) is presented in plots
—n)%/p2, wheres= — (1/2)+ [(1/4)+Wmsz]l/2- Numbern (b) and(c), respectively(d) Stationary propagati().n.c.)f a staple fun-
stands for the mode orden€0,1, . ..), and thdocalized _damental modex=1). For all the plotSa_:4, th_e |n|t|a_1| amplitude
solutions are possible providew<s. The profiles of the 'S Vo=0-1, anda; corresponds to the bifurcation point.

guided modes can be found analytically in the form

=

show two examples of the evolution of guided modes. In the
v (X)=Vsech "(x/p)H(—n,2s—n+1s—n+1:0), first exa}mple[see Fig. ,’Ba)—.3(.c)], a weak fundamental mode
is amplified via parametric interaction with a soliton wave-

where/=2%[1—tanh{/p)], V is the mode amplitude, anld ~ guide, and the mode experiences a strong power exchange

is the hypergeometric function. with the orthogonally polarized FF component through the
According to these results, a two-wave parametric solitorSH field, but with only a weak deformation of the induced

creates, in general, a multimode waveguide and larger nunvaveguide[see Figs. @), dotted curvé This effect can be

ber of the guided modes is observed for smaftefFigures  interpreted as a power exchange between two guided modes

2(a) and Zb) show the dependence of the mode cutoff valuef orthogonal polarizations in a waveguide created by the SH

oV versusa, at fixedy, and versus the parameterat fixed ~ field. In the second example, the propagation is stgdie

a, respectively. For the case=1, the dependence has a Fig- 3d)]. ) _ )

simple form:a(ln)z[l— n(w,—1)]2 W_hen all the fle_lds in Eq.2) are not smal_l, i.e., the small—
Because a two-wave soliton creates an induced wavedMplitude approximation is no longer valid, the proﬁlgs of

guide parametrically coupled to the modes of the orthogonatlhe three-component solitons should be found numerically.

polarization it guides, the dynamics of the guided matey Howevger, solme (.)f thﬁ Iowest-orc;l]erfstﬁte“s Ican be calc,EJIated
differ drastically from that of conventional waveguides 2PProximately using the approach of the “almost exact” so-

: " ; lution (5) and (6) described above. Moreover, a number of
based on the Kerr-type nonlinearities. Figure&)33(d
yP gures)33(d) the solutions and their families can be obtaineamnexplicit

analytical form For example, fore;=1/4, there exist two

25[h=g 1 5F i

/O’"J:———__ ! families of three-component solitary wavis any a=1,

20 (a) i 4/(b) in=0 ] which describe soliton branches starting at the bifurcation
K ; 1 s ; points a;=a{Y) at a=1: (i) the soliton with a zero-order
® ol . | ® ol . guided mode fory=1/3: u(x)=(3/\/2)sech(x/2), v(x)

2 : ! =c, sech&/2), w(x)=(3/2) sech(x/2); and(ii) the soliton
05_{\:# 1 1 ! with a first-order guided mode fory=1: u(x)
0.0\ : 0 =c;sech(x/2),  v(x)=cysechk(x/2)sinhx/2),  w(X)

0 2 4 6 8 o 1 2 3 4 =(3/2) secR(x/2), where c,=\3(a—1) and c,

* X =./(9/2)+ 022. Some other soliton solutions exist for a spe-

FIG. 2. Cutoff eigenvaluea!{" of the guided modes shown as Cific choice of the parameters, e.g., for=a;=4/
(a) functions ofa at y=2, and(b) functions ofy ate=4. Dashed 9 and x=1, we find u(x)=(4/3)secA(x/3), v(x)
lines correspond to the intersection of the plots in the parameter (4/3)secf(x/3)sinhx/3), and w(x)=(4/3)secR(x/3).
space f,x). Stability of these three-wave solitons is a nontrivial issue; a
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rigorous analysis of all such multicomponent states is betwo points for DPM at about 0.89 and 1.28n. This means
yond the scope of the present Rapid Communication and willhat a single QPM grating can provide simultaneous phase-
be addressed elsewhere. _ _ o matching for two parametric processes. For such a configu-
At last, we Would like to mention that in the_lm_m of large ration, we obtainy~1.92 or, interchanging the polarization
a, when the coupling to the second harmozmc N weak, W&omponents,y~0.52. The second method to achieve the
can use the cqscadlng approximatiar (u TtV ),/(2“)' conditions of DPM processes is based on the idequafsi-
Then, the equations for two orthogonal polarizations of_ thaeriodic QPM grating As has been recently shown experi-
ZE ;V:Vrir:ﬁﬁgecg)s: 2¥S1EGETT(I\)/]|¢ t\\/llla(c):t(c:)(r)usplzttjiall\lIggli?g#s?t\l/egll entally[12] and numericallyf13], Fibonacci optical super-
1Sym . b lattices provide an effective way to achieve phase-matching
studied in the literaturésee, e.g., Refl10] and references . d : .
therein. atsever_al mcomm_ens_urablg perioadowing multifrequency
For a practical realization of the DPM processes and thgarmonlc generation in a smgle structure.
In conclusion, we have introduced the concept of two-

soliton light-guiding-light effects described above, we can : ) .
suggest two general methods. The first method is based giplor multistep cascading and demonstrated a possibility of

the use oftwo commensurable periodsf the quasi-phase- light-guiding-light effect; with.paralfnetric wayeguideg cre-
matched(QPM) periodic grating. Indeed, to achieve DPM, ated by two-wave spatial solitons in quadratic media. We
we can employ the first-order QPM for one parametric probelieve our results open a new direction in research of cas-
cess, and the third-order QPM, for the other parametric procading effects, and may bring new ideas into other fields of
cess. Taking, as an example, the parameters for L{\io@  nonlinear physics, where parametric wave interactions are
AA-S (xx—2) and BB-S (zz—2) processeg1l], we find important.
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