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Two-color multistep cascading and parametric soliton-induced waveguides
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We introduce the concept oftwo-color multistep cascadingfor vectorial parametric wave mixing in optical
media with quadratic~second-order orx (2)) nonlinear response. We demonstrate that the multistep cascading
allows light-guiding-light effects with quadratic spatial solitons. With the help of the so-called ‘‘almost exact’’
analytical solutions, we describe the properties of parametric waveguides created by two-wave quadratic
solitons.@S1063-651X~99!50511-4#

PACS number~s!: 42.65.Tg, 05.45.Yv, 42.65.Jx, 42.65.Ky
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Recent progress in the study of cascading effects in o
cal materials with quadratic~second-order orx (2)) nonlinear
response has offered new opportunities for all-optical p
cessing, optical communications, and optical solitons@1,2#.
Most of the studies of cascading effects employ parame
wave mixing processes with a single phase-matching and
a result, two-step cascading. For example, the two-step
cading associated with type I second-harmonic genera
~SHG! includes the generation of the second harmonicv
1v52v) followed by reconstruction of the fundament
wave through the down-conversion frequency mixing~DFM!
process (2v2v5v). These two processes are governed
one phase-matched interaction and they differ only in
direction of power conversion.

The idea to explore more than one simultaneous ne
phase-matched process, ordouble-phase-matched (DPM
wave interaction, became attractive only recently@3,4#, for
the purposes of all-optical transistors, enhanced nonlinea
induced phase shifts, and polarization switching. In parti
lar, it was shown @4# that multistep cascading can b
achieved by two second-order nonlinear cascading proce
SHG and sum-frequency mixing~SFM!, and these two pro-
cesses can also support a novel class of multicolor para
ric solitons@5#. The physics involved into the multistep ca
cading can be understood by analyzing a chain of param
processes: SHG (v1v52v)→SFM (v12v53v)
→DFM (3v2v52v)→DFM (2v2v5v). The main
disadvantage of this kind of parametric processes for ap
cations is that it requires nonlinear media transparent u
the third harmonic frequency.

Then, the important question is:Can we find parametric
processes which involve only two frequencies but allow u
get all advantages of multistep cascading?In this Rapid
Communication, we answer positively this question int
ducing the concept oftwo-color multistep cascading. We
demonstrate a number of unique features of multistep p
metric wave mixing that do not exist for the convention
two-step cascading. In particular, using one of the proce
of two-color multistep cascading, we show how to introdu
and explore the concept of light guiding light for quadra
spatial solitons, which was analyzed earlier for Kerr-like sp
tial solitary waves@6# but seemed impossible for parametr
interactions. We find ‘‘almost exact’’ analytical solutions fo
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two-wave quadratic solitons and investigate, analytically a
numerically, the properties of parametric waveguides crea
by quadratic spatial solitons inx (2) nonlinear media.

To introduce more than one parametric process involv
only two frequencies, we consider a vectorial interaction
waves with different polarization. We denote two orthogon
polarization components of the fundamental frequency~FF!
wave (v15v) asA andB, and two orthogonal polarization
of the second harmonic~SH! wave (v252v), asS and T.
Then, a simple multistep cascading process consists of
following steps. First, the FF waveA generates the SH wav
S via type I SHG process. Then, by down-conversionSA-B,
the orthogonal FF waveB is generated. At last, the initial FF
wave A is reconstructed by the processesSB-A or AB-S,
SA-A. Two principal second-order processesAA-S and
AB-S correspond totwo different componentsof the x (2)

susceptibility tensor, thus introducing additional degrees
freedom into the parametric interaction. Different types
multistep cascading processes are summarized in Tab
The processes in row~a! of Table I described above and th
multistep cascading introduced in Ref.@4# are qualitatively
similar, but the latter involves a third-harmonic wave.

To demonstrate some of the unique properties of the m
tistep cascading, we discuss here how it can be employed
light-guiding-light effects in quadratic media. For this pu
pose, we consider the principal DPM process~c! ~see Table
I! in the planar slab-waveguide geometry. Using the slow
varying envelope approximation with the assumption of z
absorption of all interacting waves, we obtain

2ik1

]A

]z
1

]2A

]x2
1x1SA* e2 iDk1z50, ~1!

TABLE I. Possible multistep cascading processes.

Principal Equivalent

~a! (AA-S, AB-S) (BB-S, AB-S); (AA-T, AB-T)
(BB-T, AB-T)

~b! (AA-S, AB-T) (BB-S, AB-T); (AA-T, AB-S)
(BB-T, AB-S)

~c! (AA-S, BB-S) (AA-T, BB-T)
~d! (AA-S, AA-T) (BB-S, BB-T)
R5056 © 1999 The American Physical Society
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2ik1

]B

]z
1

]2B

]x2
1x2SB* e2 iDk2z50,

4ik1

]S

]z
1

]2S

]x2
12x1A2eiDk1z12x2B2eiDk2z50,

wherex1,252k1s1,2, the nonlinear coupling coefficientssk
are proportional to the elements of the second-order sus
tibility tensor, andDk1 andDk2 are the corresponding wave
vector mismatch parameters.

To simplify system~1!, we look for its stationary solu-
tions and introduce the normalized envelopesu, v, and w
according to the following relations:A5g1u exp(ibz
2i/2Dk1z), B5g2v exp(ibz2i/2Dk2z), and S
5g3w exp(2ibz), where g1

2152x1x0
2, g2

2152x0
2(x1x2)1/2,

andg3
215x1x0

2, and the longitudinal and transverse coor
nates are measured in the units ofz05(b2Dk1/2)21 and
x05(z0/2k1)1/2, respectively. Then, we obtain a system
normalized equations,

i
]u

]z
1

]2u

]x2
2u1u* w50,

i
]v
]z

1
]2v

]x2
2a1v1xv* w50, ~2!

2i
]w

]z
1

]2w

]x2
2aw1

1

2
~u21v2!50,

wherex[(x2 /x1), a15(b2Dk2/2)(b2Dk1/2)21, and a
54b (b2Dk1/2)21. Equations ~2! are the fundamenta
model for describing any type of multistep cascading p
cesses of type~c! ~see Table I!.

First of all, we notice that forv50 ~or, similarly, u50),
the dimensionless model~2! coincides with the correspond
ing model for the two-step cascading due to type I SH
discussed earlier@1,2#, and its stationary solutions are d
fined by the equations for realu andw,

d2u

dx2
2u1uw50,

~3!
d2w

dx2
2aw1

1

2
u250,

which possess a one-parameter family of two-wave locali
solutions (u0 ,w0) found earlier numerically for anyaÞ1,
and also known analytically for a51, u0(x)
5(3/A2)sech2(x/2)5A2w0(x) ~see Ref.@2#!.

Then, in the small-amplitude approximation, the equat
for real orthogonally polarized FF wavev can be treated a
an eigenvalue problem for an effective waveguide created
the SH fieldw0(x),

d2v

dx2
1@x w0~x!2a1#v50. ~4!
p-

-

f

-

d

n

y

Therefore, an additional parametric process allows us
propagate a probe beam of one polarization inan effective
waveguidecreated by a two-wave spatial soliton in a qu
dratic medium with FF component of another polarizatio
However, this type of waveguide is different from what h
been studied for Kerr-like solitons because it iscoupled
parametrically to the guided modes and, as a result, t
physical picture of the guided modes is valid, rigorous
speaking, only in the case of stationary phase-matc
beams. As a result, the stability of the corresponding wa
guide and localized modes of the orthogonal polarization
guides is a key issue. In particular, the waveguide itself~i.e.,
two-wave parametric soliton! becomes unstable fora,acr
'0.2 @7#.

In order to find the guided modes of the parametric wa
guide created by a two-wave quadratic soliton, we have
solve Eq.~4! where the solutionw0(x) is known numerically
only. These solutions have been also described by the va
tional method@8#, but the different types of the variationa
ansatz used do not provide a very good approximation
the soliton profile at alla. For our eigenvalue problem~4!,
the functionw0(x) defines parameters of the guided mod
and, in order to obtain accurate results, it should be ca
lated as close as possible to the exact solutions found
merically. To resolve this difficulty, below we suggest a
‘‘almost exact’’ solution thatwould allow us to solve ana
lytically many of the problems involving quadratic soliton,
including the eigenvalue problem~4!.

First, we notice that from the exact result ata51 and the
asymptotic result for largea, w'u2/(2a), it follows that
the SH componentw0(x) of Eqs. ~3! remains almost self-
similar for a>1. Thus, we look for the SH field in the form
w0(x)5wm sech2(x/p), wherewm and p are unknown yet
parameters. The solution foru0(x) should be consistent with
this choice of the shape for SH, and it is defined by the fi
~linear for u) equation of the system~3!. Therefore, we can
take u in the form of the lowest guided mode,u0(x)
5um sechp(x/p), which corresponds to an effective wav
guide w0(x). By matching the asymptotics of these tri
functions with those defined directly from Eqs.~3! at small
and largex, we obtain the following solution:

u0~x!5um sechp~x/p!, w0~x!5wm sech2~x/p!, ~5!

um
2 5

awm
2

~wm21!
, a5

4~wm21!3

~22wm!
, p5

1

~wm21!
, ~6!

where all parameters are functions ofa only. It it easy to
verify that, for acr,a,`, the SH amplitude varies in the
region 1.3,wm,2, so that all the terms in Eq.~6! remain
positive.

It is really amazing that the analytical solution~5! and~6!
providesan excellent approximationfor the profiles of the
two-wave parametric solitons found numerically. Figur
1~a! and 1~b! show a comparison between the maximum a
plitudes of the FF and SH components and selected so
profiles, respectively. As a matter of fact, the numerical a
analytical results on these plots are not distinguishable,
that is why we show them differently, by continuous curv
and crosses. Fora,1, the SH profile changes, but in th
region a.acr the approximate analytical solution is sti
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very close to the exact numerical one: a relative error is less
than 1%, for the amplitudes, and it does not exceed 3%,
the power components. That is why we define the analyt
solution given by Eqs.~5! and~6! as ‘‘almost exact.’’ Details
of the derivation, as well as the analysis of the casea,1,
will be presented elsewhere@9#.

Now, the eigenvalue problem~4! can be readily solved
analytically. The eigenmode cutoff values are defined by
parametera1 that takes one of the discrete values,a1

(n)5(s
2n)2/p2, wheres52(1/2)1@(1/4)1wmxp2#1/2. Numbern
stands for the mode order (n50,1, . . . ), and thelocalized
solutions are possible providedn,s. The profiles of the
guided modes can be found analytically in the form

vn~x!5Vsechs2n~x/p!H~2n,2s2n11,s2n11;z!,

wherez5 1
2 @12tanh(x/p)#, V is the mode amplitude, andH

is the hypergeometric function.
According to these results, a two-wave parametric soli

creates, in general, a multimode waveguide and larger n
ber of the guided modes is observed for smallera. Figures
2~a! and 2~b! show the dependence of the mode cutoff valu
a1

(n) versusa, at fixedx, and versus the parameterx, at fixed
a, respectively. For the casex51, the dependence has
simple form:a1

(n)5@12n(wm21)#2.
Because a two-wave soliton creates an induced wa

guide parametrically coupled to the modes of the orthogo
polarization it guides, the dynamics of the guided modesmay
differ drastically from that of conventional waveguide
based on the Kerr-type nonlinearities. Figures 3~a!–3~d!

FIG. 1. Comparison between the numerical~continuous curves!
and ‘‘almost exact’’ analytical~crosses! solutions for two-wave
~FF, dotted; SH, solid! parametric solitons:~a! maximum ampli-
tudes,~b! two-wave soliton profile ata54.

FIG. 2. Cutoff eigenvaluesa1
(n) of the guided modes shown a

~a! functions ofa at x52, and~b! functions ofx at a54. Dashed
lines correspond to the intersection of the plots in the param
space (a,x).
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show two examples of the evolution of guided modes. In
first example@see Fig. 3~a!–3~c!#, a weak fundamental mod
is amplified via parametric interaction with a soliton wav
guide, and the mode experiences a strong power excha
with the orthogonally polarized FF component through t
SH field, but with only a weak deformation of the induce
waveguide@see Figs. 3~a!, dotted curve#. This effect can be
interpreted as a power exchange between two guided m
of orthogonal polarizations in a waveguide created by the
field. In the second example, the propagation is stable@see
Fig. 3~d!#.

When all the fields in Eq.~2! are not small, i.e., the small
amplitude approximation is no longer valid, the profiles
the three-component solitons should be found numerica
However, some of the lowest-order states can be calcul
approximately using the approach of the ‘‘almost exact’’ s
lution ~5! and ~6! described above. Moreover, a number
the solutions and their families can be obtained inan explicit
analytical form. For example, fora151/4, there exist two
families of three-component solitary wavesfor any a>1,
which describe soliton branches starting at the bifurcat
points a15a1

(1) at a51: ~i! the soliton with a zero-orde
guided mode forx51/3: u(x)5(3/A2)sech2(x/2), v(x)
5c2 sech(x/2), w(x)5(3/2) sech2(x/2); and~ii ! the soliton
with a first-order guided mode for x51: u(x)
5c1 sech2(x/2), v(x)5c2sech2(x/2)sinh(x/2), w(x)
5(3/2) sech2(x/2), where c25A3(a21) and c1

5A(9/2)1c2
2. Some other soliton solutions exist for a sp

cific choice of the parameters, e.g., fora5a154/
9 and x51, we find u(x)5(4/3)sech3(x/3), v(x)
5(4/3)sech3(x/3)sinh(x/3), and w(x)5(4/3)sech2(x/3).
Stability of these three-wave solitons is a nontrivial issue

er

FIG. 3. ~a! Change of the normalized power in FF (u, solid
lines! and SH (w, dotted lines! components, which initially consti-
tute a two-wave soliton, and in the guided mode (v, dashed lines! at
x52, demonstrating amplification of a guided wave. Evolution
the guided wave and effective waveguide~SH! is presented in plots
~b! and~c!, respectively.~d! Stationary propagation of a stable fun
damental mode (x51). For all the plotsa54, the initial amplitude
is v050.1, anda1 corresponds to the bifurcation point.
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rigorous analysis of all such multicomponent states is
yond the scope of the present Rapid Communication and
be addressed elsewhere.

At last, we would like to mention that in the limit of larg
a, when the coupling to the second harmonic is weak,
can use the cascading approximationw'(u21v2)/(2a).
Then, the equations for two orthogonal polarizations of
FF wave reduce to a system of two coupled NLS equatio
an asymmetric case of TE-TM vector spatial solitons w
studied in the literature~see, e.g., Ref.@10# and references
therein!.

For a practical realization of the DPM processes and
soliton light-guiding-light effects described above, we c
suggest two general methods. The first method is base
the use oftwo commensurable periodsof the quasi-phase
matched~QPM! periodic grating. Indeed, to achieve DPM
we can employ the first-order QPM for one parametric p
cess, and the third-order QPM, for the other parametric p
cess. Taking, as an example, the parameters for LiNbO3 and
AA-S (xx2z) and BB-S (zz2z) processes@11#, we find
ma

, i

p-
-

t.

d

-
ill

e

e
s,
ll

e

on

-
-

two points for DPM at about 0.89 and 1.25mm. This means
that a single QPM grating can provide simultaneous pha
matching for two parametric processes. For such a confi
ration, we obtainx'1.92 or, interchanging the polarizatio
components,x'0.52. The second method to achieve t
conditions of DPM processes is based on the idea ofquasi-
periodic QPM grating. As has been recently shown expe
mentally@12# and numerically@13#, Fibonacci optical super-
lattices provide an effective way to achieve phase-match
at several incommensurable periodsallowing multifrequency
harmonic generation in a single structure.

In conclusion, we have introduced the concept of tw
color multistep cascading and demonstrated a possibility
light-guiding-light effects with parametric waveguides cr
ated by two-wave spatial solitons in quadratic media. W
believe our results open a new direction in research of c
cading effects, and may bring new ideas into other fields
nonlinear physics, where parametric wave interactions
important.
o-
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