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Abstract. Third-order susceptibility tensor components of metal–oxide crystals are calculated
using an approach based on the bond charge model used previously for the calculation ofχ(2)

and χ(3) of simple crystal structures. Calculated values ofχ(3) of PbMoO4, CaWO4, CaCO3

and KDP are compared with the experimental data.

1. Introduction

The study of cubic susceptibilityχ(3) is very important because it is responsible for such non-
linear effects as self-focusing, self-phase modulation, four-wave-mixing processes, Raman
scattering and others. Third-order processes are expected to be a base for the construction
of all optical switching devices [1].

The development of models to calculateχ(3) gives rise to the possibility of predicting
the values of the tensor components of non-linear susceptibilities in crystals not investigated
experimentally. Moreover, the comparison of the theoretical and experimental results for
χ(3) helps to evaluate the correct models to describe susceptibilities in crystals.

There are several approaches for the calculation of non-linear optical susceptibilities.
The most accurate model is the quantum mechanical approach [2]. It is only applied for
the simplest crystals [3] because of the need for a lot of computer resources to calculate the
accurate wavefunctions and energies for a large number of excited states.

The other models are based on approximations. The theory of bond orbitals [4] gives
a simple method to approximately calculate the eigenstates of the crystals. Using the bond
orbital model, Phillips [5] and Van Vechten [6] developed a dielectric description of ionicity
that has been successfully employed in many areas connected with crystal structures. In
particular they obtained the expression ofχ(1) for tetrahedral crystal structures. Levine
[7, 8] extended this theory for other types of crystal structures and developed, on its basis,
an electrodynamical model forχ(2) that gives excellent agreement with experiments.

Chemla [9] developed further theχ(2) theory of Levine and adapted it for the calculation
of χ(3) in semiconductor crystals with simple structure. The application of this model for
other metal–oxide crystals does not give acceptable agreement with experiment. In particular
this theory does not give the correct sign ofχ(3) in PbMoO4.

To our knowledge, a model for calculation ofχ(3) in metal–oxide crystals with mixed
ionic and covalent bonds has not been published. In this paper we present a model for
calculation of the magnitude and sign ofχ(3) tensor components of metal–oxide crystals.
The model is a modification of the Bond Charge Model (BCM) used previously by Levine
[8] for calculation ofχ(2) and by Chemla [9] for calculation ofχ(3). The calculations are
compared with the experimental data.
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2. Calculation method

The main idea in the model described above is the calculation of the microscopic cubic
hyperpolarizability of the bonds in the crystalγijkl and after that the summation over all
bonds in the elementary cell.

Let α be the mean bond polarizability which is macroscopically defined by [5]:

α = 1
3(α‖ + 2α⊥) = 1

4πNb

(h�p)
2

E2
g

. (1)

In this formula α‖ is the polarizability along the bond,α⊥, the polarizability in the
perpendicular direction andNb, the number of bonds per cm3. The plasma frequency
�p, in this relation, is obtained from the number of valence electronsNe using

(h�p)
2 = DA(4πNe e2/me) (2)

whereD andA are correction factors with magnitudes close to one.Eg is the mean energy
gap that according to Phillips [5] consists in two parts: homopolarEh and heteropolarC
and

E2
g = E2

h + C2. (3)

These two parts define the ionicity of the bond

fi = C2/E2
g. (4)

We have used the following definitions forEh andC of the AmBn bond [5]:

Eh = 39.74d−2.48 (5)
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(
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ra
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rb

)
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Here d is the distance between atom A and atom B,ra and rb are the covalent radii (i.e.
d = ra + rb) and Za and Zb are the numbers of valence electrons. The termb e−kr0,
where r0 = d/2, is the Thomas–Fermi screening factor in whichb is a constant that is
approximately 1.5 for most of the crystals under investigation.

We did not use the Levine expression forE2
h [8], which includes dependencies onra

andrb, because this expression is in agreement with Phillips theory only whenra = rb. For
bonds withra 6= rb expression (5) gives values for the ionicityfi that are much closer to
the known experimental values. Moreover, using the Levine expression in our model we
obtain an incorrect sign forχ(3) for the PbMoO4 crystal.

Let us first find the non-linear solution for one bond. For this purpose we will suppose
that the non-linearity is caused by the displacement of the bond chargeq, which is localized
between atom A and atom B, at distancesra andrb respectively, as a function of the applied
electrical fieldE. Expandingα in powers ofE we obtain:

αij (E) = αij (0) =
∑

k

βijkEk +
∑
kl

γijklEkEl (7)

whereβ andγ are the second- and third-order bond susceptibilities:

βijk =
(

∂αij

∂Ekl

)
E=0

γijkl =
(

∂2αij

∂Ek∂El

)
E0

. (8)

For the case when the electrical fieldE is directed along the bond, the induced moment
is δrq = α‖E‖ and the changes inra andrb can be represented as:

1ra = −1rb = δr = α‖E‖
q

(9)
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where according to theBCM the bond charge isq = (2/εh)e (εh is the homopolar part of
dielectric constantε, e is the electron charge unit).

For the fieldE perpendicular to the bond:

1ra,b = δr2

2ra,b
= α2

⊥E2
⊥

2ra,bq2
. (10)

The non-zero tensor components of the cubic bond polarizability of an axially symmetric
bond are

γzzzz = γ‖ γxxxx = γyyyy = 3γxxyy = γ⊥. (11)

To find γ‖ andγ⊥ we use the fact thatα is a function of charge displacementδr

α(δr) = A0 + A1δr + A2δr
2 + A3δr

3 + · · · . (12)

The displacementδr can be defined from the expansion of the polarizability of one bond
p = δrq and it is:

δr = 1

q
(α(0)E + βE2 + γE3). (13)

Substituting (13) in (12) we obtain:

α(δr(E)) = A0 + A1α(0)

q
E +

(
A1β

q
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2(0)
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)
E2 + · · · . (14)

Comparing with (7) we obtain

α(0) = A0 β = A1α(0)

q
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1α(0) + A2α
2(0)

q2
(15)

where
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and must be calculated for bothE‖ andE⊥.
Macro-susceptibilityχ(3) is obtained by summarization of the contributions of all the

bonds in the crystal cell

χ
(3)
IJKL = 4Ncell

∑
s

∑
ijkl

cos(θIi) cos(θJj ) cos(θKk) cos(θLl)γijkl,s (19)

whereNcell is the number of elementary cells in 1 cm3, θIi is the angle between axisI of the
co-ordinate system connected with the bond and axisi of the crystallographic co-ordinate
system ands is an index that covers different bonds.
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3. Calculation of χ(3) of some metal–oxide crystals

We used thisχ(3) model for the calculation of the cubic non-linearityχ(3)(−ω, ω, ω,−ω)

for some crystals with sheelit structure, CaCO3 and KDP. Calculations were done for a
pump beam withλ = 532 nm. In this type of crystal, as our calculations show, the main
contribution toχ(3) is from oxide groups: MoO4 group for PbMoO4, WO4 for CaWO4, CO3

for CaCO3 and PO4 for the KDP crystal. The calculated values for diagonal components
of χ(3) are compared with the experimental data in table 1. The agreement between the
experimental and calculated data seems to be good for PbMoO4 and CaWO4 crystals.
There are some difficulties with crystals with flat oxide groups, as in the case of CaCO3. In
this case there are electronic orbitals directed perpendicular to the plane of the flat group.
This may explain the observed discrepancy between experimental and calculated values for
CaCO3. Further development of this model based on anionic group theory [12] is needed
to take into account the contributions of these orbitals. At this point we have to note that,
although the role of the cations is small, it should not be totally neglected.

Table 1. Comparison of the calculated and experimental data forχ(3) of some metal–oxide
dielectric crystals.

Bond |χ(3)| |χ(3)|
hyperpolarizability Theoretical Experimental

Bond with Ionicity of (10−37 esu) (10−14 esu) (10−14 esu)
predominant the bond

Crystal contribution (%) γ‖ γ⊥ χ
(3)
xxxx χ

(3)
zzzz χ

(3)
xxxx χ

(3)
zzzz error (%) ref.

PbMoO4 Mo–O 48 −72 −55 68 58 86 48 17 [10]
CaWO4 W–O 49 −4.2 −0.78 1.8 1.7 2.1 2.8 15 [9]
CaCO3 C–O 46 0.036 0.074 0.13 0.23 0.48 0.33 15 [9]
KDP P–O 41 −0.62 −0.15 0.16 0.12 0.28 0.31 15 [9]

The calculated components are negative for PbMoO4, CaWO4 and KDP crystals and
positive for the CaCO3 crystal. In [11], using the phase-conjugate interferometric method,
we measured the sign of theχ(3) components of PbMoO4 relative to the componentχ(3)

xxxx

of CS2, now accepted as a standard for positive cubic non-linearity. The negative sign
measured for theχ(3)

xxxx and χ(3)
zzzz components is in agreement with our calculations. The

method used in [10], for the measurement of theχ(3) components in CaWO4, CaCO3 and
KDP, does not allow sign determination.
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