Calculation of third-order non-linear optical susceptibility of metal–oxide crystals

K Koynov, P Mitev, I Buchvarov and S Saltiel

Department of Physics, University of Sofia, 1164 Sofia, Bulgaria

Received 26 June 1995, in final form 12 September 1995

Abstract. Third-order susceptibility tensor components of metal–oxide crystals are calculated using an approach based on the bond charge model used previously for the calculation of $\chi^{(2)}$ and $\chi^{(3)}$ of simple crystal structures. Calculated values of $\chi^{(3)}$ of PbMoO₄, CaWO₄, CaCO₃ and KDP are compared with the experimental data.

1. Introduction

The study of cubic susceptibility $\chi^{(3)}$ is very important because it is responsible for such nonlinear effects as self-focusing, self-phase modulation, four-wave-mixing processes, Raman scattering and others. Third-order processes are expected to be a base for the construction of all optical switching devices [1].

The development of models to calculate $\chi^{(3)}$ gives rise to the possibility of predicting the values of the tensor components of non-linear susceptibilities in crystals not investigated experimentally. Moreover, the comparison of the theoretical and experimental results for $\chi^{(3)}$ helps to evaluate the correct models to describe susceptibilities in crystals.

There are several approaches for the calculation of non-linear optical susceptibilities. The most accurate model is the quantum mechanical approach [2]. It is only applied for the simplest crystals [3] because of the need for a lot of computer resources to calculate the accurate wavefunctions and energies for a large number of excited states.

The other models are based on approximations. The theory of bond orbitals [4] gives a simple method to approximately calculate the eigenstates of the crystals. Using the bond orbital model, Phillips [5] and Van Vechten [6] developed a dielectric description of ionicity that has been successfully employed in many areas connected with crystal structures. In particular they obtained the expression of $\chi^{(1)}$ for tetrahedral crystal structures. Levine [7,8] extended this theory for other types of crystal structures and developed, on its basis, an electrodynamical model for $\chi^{(2)}$ that gives excellent agreement with experiments.

Chemla [9] developed further the $\chi^{(2)}$ theory of Levine and adapted it for the calculation of $\chi^{(3)}$ in semiconductor crystals with simple structure. The application of this model for other metal–oxide crystals does not give acceptable agreement with experiment. In particular this theory does not give the correct sign of $\chi^{(3)}$ in PbMoO₄.

To our knowledge, a model for calculation of $\chi^{(3)}$ in metal–oxide crystals with mixed ionic and covalent bonds has not been published. In this paper we present a model for calculation of the magnitude and sign of $\chi^{(3)}$ tensor components of metal–oxide crystals. The model is a modification of the Bond Charge Model (BCM) used previously by Levine [8] for calculation of $\chi^{(2)}$ and by Chemla [9] for calculation of $\chi^{(3)}$. The calculations are compared with the experimental data.

0963-9659/96/010089+05\$19.50 © 1996 IOP Publishing Ltd

2. Calculation method

The main idea in the model described above is the calculation of the microscopic cubic hyperpolarizability of the bonds in the crystal γ_{ijkl} and after that the summation over all bonds in the elementary cell.

Let α be the mean bond polarizability which is macroscopically defined by [5]:

$$\alpha = \frac{1}{3}(\alpha_{\parallel} + 2\alpha_{\perp}) = \frac{1}{4\pi N_{\rm b}} \frac{(h\Omega_{\rm p})^2}{E_{\rm g}^2}.$$
(1)

In this formula α_{\parallel} is the polarizability along the bond, α_{\perp} , the polarizability in the perpendicular direction and $N_{\rm b}$, the number of bonds per cm³. The plasma frequency $\Omega_{\rm p}$, in this relation, is obtained from the number of valence electrons $N_{\rm e}$ using

$$(h\Omega_{\rm p})^2 = DA(4\pi N_{\rm e}\,{\rm e}^2/m_{\rm e}) \tag{2}$$

where *D* and *A* are correction factors with magnitudes close to one. E_g is the mean energy gap that according to Phillips [5] consists in two parts: homopolar E_h and heteropolar *C* and

$$E_{\rm g}^2 = E_{\rm h}^2 + C^2. \tag{3}$$

These two parts define the ionicity of the bond

$$f_{\rm i} = C^2 / E_{\rm g}^2. \tag{4}$$

We have used the following definitions for E_h and C of the $A_m B_n$ bond [5]:

$$E_{\rm h} = 39.74 d^{-2.48} \tag{5}$$

$$C = b e^{-kr_0} \left(\frac{Z_a}{r_a} - \frac{n}{m} \frac{Z_b}{r_b} \right).$$
(6)

Here *d* is the distance between atom A and atom B, r_a and r_b are the covalent radii (i.e. $d = r_a + r_b$) and Z_a and Z_b are the numbers of valence electrons. The term $b e^{-kr_0}$, where $r_0 = d/2$, is the Thomas–Fermi screening factor in which *b* is a constant that is approximately 1.5 for most of the crystals under investigation.

We did not use the Levine expression for E_h^2 [8], which includes dependencies on r_a and r_b , because this expression is in agreement with Phillips theory only when $r_a = r_b$. For bonds with $r_a \neq r_b$ expression (5) gives values for the ionicity f_i that are much closer to the known experimental values. Moreover, using the Levine expression in our model we obtain an incorrect sign for $\chi^{(3)}$ for the PbMoO₄ crystal.

Let us first find the non-linear solution for one bond. For this purpose we will suppose that the non-linearity is caused by the displacement of the bond charge q, which is localized between atom A and atom B, at distances r_a and r_b respectively, as a function of the applied electrical field E. Expanding α in powers of E we obtain:

$$\alpha_{ij}(E) = \alpha_{ij}(0) = \sum_{k} \beta_{ijk} E_k + \sum_{kl} \gamma_{ijkl} E_k E_l$$
(7)

where β and γ are the second- and third-order bond susceptibilities:

$$\beta_{ijk} = \left(\frac{\partial \alpha_{ij}}{\partial E_{kl}}\right)_{E=0} \qquad \gamma_{ijkl} = \left(\frac{\partial^2 \alpha_{ij}}{\partial E_k \partial E_l}\right)_{E_0}.$$
(8)

For the case when the electrical field *E* is directed along the bond, the induced moment is $\delta rq = \alpha_{\parallel} E_{\parallel}$ and the changes in r_a and r_b can be represented as:

$$\Delta r_{\rm a} = -\Delta r_{\rm b} = \delta r = \frac{\alpha_{\parallel} E_{\parallel}}{q} \tag{9}$$

where according to the BCM the bond charge is $q = (2/\varepsilon_h)e$ (ε_h is the homopolar part of dielectric constant ε , e is the electron charge unit).

For the field E perpendicular to the bond:

$$\Delta r_{\rm a,b} = \frac{\delta r^2}{2r_{\rm a,b}} = \frac{\alpha_{\perp}^2 E_{\perp}^2}{2r_{\rm a,b}q^2}.$$
(10)

The non-zero tensor components of the cubic bond polarizability of an axially symmetric bond are

$$\gamma_{zzzz} = \gamma_{\parallel} \qquad \gamma_{xxxx} = \gamma_{yyyy} = 3\gamma_{xxyy} = \gamma_{\perp}. \tag{11}$$

To find γ_{\parallel} and γ_{\perp} we use the fact that α is a function of charge displacement δr

$$\alpha(\delta r) = A_0 + A_1 \delta r + A_2 \delta r^2 + A_3 \delta r^3 + \cdots.$$
⁽¹²⁾

The displacement δr can be defined from the expansion of the polarizability of one bond $p = \delta r q$ and it is:

$$\delta r = \frac{1}{q} (\alpha(0)E + \beta E^2 + \gamma E^3). \tag{13}$$

Substituting (13) in (12) we obtain:

$$\alpha(\delta r(E)) = A_0 + \frac{A_1 \alpha(0)}{q} E + \left(\frac{A_1 \beta}{q} + \frac{A_2 \alpha^2(0)}{q^2}\right) E^2 + \cdots$$
 (14)

Comparing with (7) we obtain

$$\alpha(0) = A_0 \qquad \beta = \frac{A_1 \alpha(0)}{q} \qquad \gamma = \frac{A_1^2 \alpha(0) + A_2 \alpha^2(0)}{q^2}$$
(15)

where

$$A_{0} = \frac{1}{N_{\rm b} 4\pi} \frac{(h\Omega_{\rm p})^{2}}{E_{\sigma}^{2}}$$
(16)

$$A_{1} = \frac{\partial}{\partial \delta r} \left(\frac{1}{N_{\rm b} 4\pi} \frac{(h\Omega_{\rm p})^{2}}{E_{\rm g}^{2}} \right)_{\delta r=0}$$
(17)

$$A_2 = \frac{\partial^2}{\partial (\delta r)^2} \left(\frac{1}{N_{\rm b} 4\pi} \frac{(h\Omega_{\rm p})^2}{E_{\rm g}^2} \right)_{\delta r=0}$$
(18)

and must be calculated for both E_{\parallel} and E_{\perp} .

Macro-susceptibility $\chi^{(3)}$ is obtained by summarization of the contributions of all the bonds in the crystal cell

$$\chi_{IJKL}^{(3)} = 4N_{\text{cell}} \sum_{s} \sum_{ijkl} \cos(\theta_{Ii}) \cos(\theta_{Jj}) \cos(\theta_{Kk}) \cos(\theta_{Ll}) \gamma_{ijkl,s}$$
(19)

where N_{cell} is the number of elementary cells in 1 cm³, θ_{Ii} is the angle between axis *I* of the co-ordinate system connected with the bond and axis *i* of the crystallographic co-ordinate system and *s* is an index that covers different bonds.

3. Calculation of $\chi^{(3)}$ of some metal–oxide crystals

We used this $\chi^{(3)}$ model for the calculation of the cubic non-linearity $\chi^{(3)}(-\omega, \omega, \omega, -\omega)$ for some crystals with sheelit structure, CaCO₃ and KDP. Calculations were done for a pump beam with $\lambda = 532$ nm. In this type of crystal, as our calculations show, the main contribution to $\chi^{(3)}$ is from oxide groups: MoO₄ group for PbMoO₄, WO₄ for CaWO₄, CO₃ for CaCO₃ and PO₄ for the KDP crystal. The calculated values for diagonal components of $\chi^{(3)}$ are compared with the experimental data in table 1. The agreement between the experimental and calculated data seems to be good for PbMoO₄ and CaWO₄ crystals. There are some difficulties with crystals with flat oxide groups, as in the case of CaCO₃. In this case there are electronic orbitals directed perpendicular to the plane of the flat group. This may explain the observed discrepancy between experimental and calculated values for CaCO₃. Further development of this model based on anionic group theory [12] is needed to take into account the contributions of these orbitals. At this point we have to note that, although the role of the cations is small, it should not be totally neglected.

deleter erystals.										
	Bond with	Ionicity of the bond	Bond hyperpolarizability (10 ⁻³⁷ esu)		$ \chi^{(3)} $ Theoretical (10^{-14} esu)		$ \chi^{(3)} $ Experimental (10^{-14} esu)			
Crystal	contribution	(%)	γ_{\parallel}	γ_{\perp}	$\chi^{(3)}_{xxxx}$	$\chi^{(3)}_{zzzz}$	$\chi^{(3)}_{xxxx}$	$\chi^{(3)}_{zzzz}$	error (%)	ref.
PbMoO ₄	Mo–O	48 -	-72	-55	68	58	86	48	17	[10]
CaWO ₄	W–O	49	-4.2	-0.78	1.8	1.7	2.1	2.8	15	[9]
CaCO ₃	C–O	46	0.036	0.074	0.13	0.23	0.48	0.33	15	[9]
KDP	P-O	41	-0.62	-0.15	0.16	0.12	0.28	0.31	15	[9]

Table 1. Comparison of the calculated and experimental data for $\chi^{(3)}$ of some metal–oxide dielectric crystals.

The calculated components are negative for PbMoO₄, CaWO₄ and KDP crystals and positive for the CaCO₃ crystal. In [11], using the phase-conjugate interferometric method, we measured the sign of the $\chi^{(3)}$ components of PbMoO₄ relative to the component $\chi^{(3)}_{xxxx}$ of CS₂, now accepted as a standard for positive cubic non-linearity. The negative sign measured for the $\chi^{(3)}_{xxxx}$ and $\chi^{(3)}_{zzzz}$ components is in agreement with our calculations. The method used in [10], for the measurement of the $\chi^{(3)}$ components in CaWO₄, CaCO₃ and KDP, does not allow sign determination.

Acknowledgments

The authors would like to thank the Bulgarian Science Foundation for grant F405.

References

- [1] Stegeman G I and Wright E M 1990 All-optical waveguide switching J. Opt. Quantum Electron 22 95-122
- [2] Bloembergen N 1965 Non-linear Optics (New York: Benjamin)
- [3] Shen Y R 1984 The Principles of Non-linear Optics (New York: Wiley)
- [4] Harrison W H 1980 Electronic Structure and Properties of Solids (San Francisco, CA: Freeman)
- [5] Phillips J C 1968 Dielectric definition of electronegativity Phys. Rev. Lett. 20 550-3
- [6] Van Vechten J A 1969 Electronegativity in covalent systems Phys. Rev. 182 891-903
- [7] Levine B F 1973 Bond susceptibilities and ionicities in complex crystal structures J. Chem. Phys. 59 1463-86

- [8] Levine B F 1973 Bond charge calculation of nonlinear optical susceptibilities for various crystal structures *Phys. Rev.* B 7 2600–26
- Chemla D S, Begley R F and Byer R L 1974 Experimental and theoretical studies of third-harmonic generation in chalcopyrite IEEE J. Quantum Electron QE-10 71–81
- [10] Adair R, Chase L L and Payne S A 1989 Nonlinear refractive index of optical crystals Phys. Rev. B 39 3337-50
- [11] Saltiel S, Goldberg S Y and Huppert D 1991 Measurement of magnitude and sign of the third order nonlinear susceptibilities in lead molibdate crystal Opt. Commun. 84 189–903
- [12] Chen C T and Wu Y 1989 New nonlinear-optical crystal: LiB₃O₅ J. Opt. Soc. Am. B 6 616-21