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Abstract

Generation of third harmonic by cascading of two phase-matched or two near phase-matched second order pro-

cesses in single quadratic crystal with focused fundamental beam is theoretically investigated. The optimized conditions

for maximum conversion into third harmonic are found with the help of analytical and numerical investigations. In

general the optimal position of focusing depends on the values of the mismatches Dk1 and Dk2 for both ‘‘steps’’ of the

second order cascading (x þ x ¼ 2x; x þ 2x ¼ 3x). It is shown that this method of third harmonic generation requires

specially chosen Dk1:opt and Dk2:opt and focusing into the center of the nonlinear media in order to obtain best efficiency.
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1. Introduction

Third harmonic generation (THG) in single

quadratic crystal is one of the most extensively

investigated cascading schemes. This interaction is

a result of simultaneous action of two phase-

matched processes x þ x ¼ 2x; x þ 2x ¼ 3x.

The first proposals for single crystal THG on the

base of second order nonlinearities can be found in
the book of Akhmanov and Khokhlov [1]. One

can find there the plane wave analysis of the con-

dition for third harmonic generation in single
quadratic crystal. A great part of the experimental

works on cascaded THG have been done in con-

ditions that only one of the two steps (second

harmonic generation or sum frequency mixing)

was phase-matched [2–12]. The maximum effi-

ciency achieved with one of the phase-matched

steps is 6% [8,9]. Much higher efficiency can be

expected if both steps are simultaneously phase-
matched. The first attempts [13,14] to fulfill si-

multaneously two phase-matching conditions were

not successful. Nowadays the situation is totally

different due to the methods for designing non-

linear media with periodical and quasi-periodical

spatial modulation of the quadratic nonlinearity
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[15,16]. Several methods that allow simultaneous

phase-matching of two or more second order

processes have been suggested [16–26]. In THG

experiment in LiTaO3 crystal with Fibonacci

quasi-periodic superlattices with both fulfilled

phase-matching conditions, 23% efficiency of the
overall process x ! 3x was achieved [21,22]. Ex-

perimental double phase-matched third harmonic

generation is reported also in [27]. Recently it is

calculated that a simultaneously phase-matching

of both steps can be obtained in a photonic band

gap structure [23,24,28]. Two-dimensional non-

linear photonic crystals are also promising non-

linear media for simultaneous phase-matching of
several processes [18,19].

Very recently several theoretical investigations

[29–32] of plane wave interactions in quadratic

media demonstrated the possibility of 100% con-

version for THG, if the ratio of the nonlinearities

responsible for the two processes is optimized.

Multiple nonlinear optical interactions including

cascaded THG in quasi-periodic superlattices with
nonzero vector mismatches have been reported

recently in single KTP crystal [25]. In this work the

authors used focusing in the center of the crystal.

Not exact phase-matching for both steps is the

reason for small THG efficiency. However, as we

will show the efficiency could be improved by us-

ing off-center focusing.

One of the approaches to achieve better con-
version with moderate input intensities in the

processes for harmonic generation is to use fo-

cused beams. The cases of single process of second

[33,34], third [34–36] and fifth [34,36,37] harmonic

generation in focused beams have been investi-

gated in the past and optimum conditions have

been defined. For example, the optimal focusing

for the direct processes is in the center of the
nonlinear crystal. Concerning single quadratic

crystal THG, by now only the cases when only one

of the two steps (x þ x ¼ 2x or x þ 2x ¼ 3x) are

phase-matched were considered [2,3]. The theo-

retical and experimental investigations of Ros-

tovtceva et al. [2,3] demonstrate that the optimal

position of the fundamental beam focus depends

on the fact which step is phase-matched: if the first
step is phase-matched, the position of the focus

should be at the output face of the quadratic

crystal and if the second step is phase-matched, the

position of the focus should be at the input face of

the quadratic crystal. According to our knowledge

no attempts have been done to calculate the

optimum conditions for single crystal THG when

both steps are phase-matched or near phase-mat-
ched.

The purpose of the present work is to inves-

tigate the process of THG by cascading two

quadratic processes that are simultaneously near

phase-matched in condition of the focused fun-

damental beam. We consider separately the case

of weak and arbitrary focusing in condition of

nondepleted approximation of the fundamental
beam. To account for the depletion of the fun-

damental beam we used direct numerical ap-

proach.

2. Main equations

The effect of THG, as a result of simultaneous

action of the processes of second harmonic gen-

eration and sum frequency mixing of the funda-

mental and the second harmonic wave, is described

by the following system of differential equations
[2,38,39], derived in assumption of zero absorption

of all interacting waves:

o

oz

�
þ i
2k1

D?

�
A ¼� ir1SA� expð�iDk1zÞ

� ir2TS� expð�iDk2zÞ;
o

oz

�
þ i
2k2

D?

�
S ¼ � ir1A2 expðiDk1zÞ ð1Þ

� i2r2TA� expð�iDk2zÞ;
o

oz

�
þ i
2k3

D?

�
T ¼ �i3r2SA expðiDk2zÞ;

where A, S, T denotes the complex amplitudes of
the fundamental, second and the third harmonic

waves. D? stands for the operator o2

ox2 þ o2

oy2. Non-

linear coupling coefficients are calculated as

r1 ¼ 2pdeff ;SHG=ðk1n1Þ and r2 ¼ 2pdeff ;SFM=ðk1n1Þ,
where the magnitude of the deff ;SHG and deff;SFM
depends on the phase-matching method and type

of the nonlinear media that are used. The wave

vector mismatches are defined as Dk1 ¼ k2 � 2k1
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and Dk2 ¼ k3 � k2 � k1, where kj are the wave

vectors of the waves involved in the process. Note

that the sum of the two-phase mismatch parame-

ters is exactly the phase mismatch parameter Dk3
for the direct process for THG (x þ x þ x ¼ 3x;
Dk3 ¼ Dk1 þ Dk2 ¼ k3 � 3k1). In general third har-

monic wave will be also generated as a result of a

direct process governed by the cubic nonlinearly of

the media. This contribution to the TH signal is in

the same order of magnitude as the TH signal, due

to the second order cascading when only one of the

cascading steps is phase-matched. But if both Dk1
or Dk2 are small, the TH signal generated due to
inherent cubic nonlinearly can be neglected.

For not very high input fundamental intensities

the effects of depletion of the fundamental and

second harmonic waves can be neglected and the

system (1) is reduced to

o

oz

�
þ i
2k1

D?

�
A ¼ 0;

o

oz

�
þ i
2k2

D?

�
S ¼ �ir1A2 expðiDk1zÞ; ð2Þ

o

oz

�
þ i
2k3

D?

�
T ¼ �i3r2SA expðiDk2zÞ:

System (2) allows some of the results to be ob-

tained in analytical form that will help to obtain

physical insight of the cascaded THG process.
We solve systems (1) and (2) with only one in-

put beam – the fundamental that has Gaussian

spatial distribution. Its propagation is described

by [36]

Aðx; y; zÞ ¼ F0
1� im

exp

�
� x2 þ y2

w2
0ð1� imÞ

�
; ð3Þ

where m ¼ 2ðz� z0Þ=b, z0 marks the position of

the focal spot, b is the confocal parameter of the

fundamental beam, b ¼ k1w2
0, w0 is the focal spot

radius, F0 is the electric field amplitude at the

center of the focal spot ð0; 0; z0Þ. With these

notations the distribution of the fundamental
field at the entrance of the nonlinear media

ðz ¼ 0Þ is

Aðx; y; 0Þ ¼ A0 exp

�
� x2
�

þ y2
� 1

w2
1

�
� ik1
2R1

��
;

ð4Þ

where the maximum amplitude, beam radius

and wave-front curvature at the crystal entrance

are

A0 ¼
w2

0

w2
1

�
� i

b
2R1

�
F0;

w2
1 ¼ w2

0 1

�
þ 4

z20
b2

�
;

R1 ¼ z0

�
þ b2

4z0

�
;

respectively.

3. Nondepleted approximation

The starting point of our consideration will be

the solution for the amplitude of the third har-

monic beam that is obtained from system (2) by

applying Green�s functions technique

T ðx; y; zÞ ¼ G
Z mð1�2lÞ

�mð1þ2lÞ

expðibDk2g=2Þ
1� ig

	
Z g

�mð1þ2lÞ

expðibDk1s=2Þ
1� is

dsdg; ð5Þ

where m denotes the strength of focusing m ¼ L=b,
(L, the length of the nonlinear media) and l is the

dimensionless parameter indicating the position of

the focus, l ¼ ð2z0 � LÞ=2L. The coefficient in Eq.

(5) is

G ¼ � 3r1r2F 3
0 b

2

4

expð�3ðx2 þ y2Þ=w2
0ð1� imÞÞ

ð1� imÞ
	 expðiz0ðDk1 þ Dk2ÞÞ:

3.1. Weak focusing limit

Let us first consider weak focusing, m 
 1.
Then the limits in (5) will be much smaller than 1

and as a result we have

T ðx; y; zÞ ¼ 4Geð�ima3lÞ

a3

a3
a1a2

exp
imða2 � a1Þ

2

� ��

� expðima3=2Þ
a1

� expð�ima3=2Þ
a2

�
; ð6Þ

where a1 ¼ bDk1 þ 2, a2 ¼ bDk2 þ 2, a3 ¼ bDk3þ4.
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Analyzing expression (6) we find out four pos-

sibilities for phase-matched generation of cascaded

third harmonic in quadratic crystals in condition

of weak focusing:

(a) phase-matching for the first step x þ x ¼ 2x.

The maximum TH efficiency is obtained when
a1 ¼ bDk1 þ 2 ¼ 0 and the required deviation

from exact phase-matching is: Dk1L ¼ �2m.
The conversion efficiency into the third har-

monic in condition of a1 
 a2 is

g3xða1 
 a2Þ ¼
12r2

1r
2
2jF0j

4b4

a23

sin2 ðma1=2Þ
a21

;

ð7Þ

(b) phase-matching for the second step. The

maximum TH efficiency is obtained when

a2 ¼ bDk2 þ 2 ¼ 0 that corresponds to devia-

tion Dk2L ¼ �2m. The magnitude of the
third harmonic field in condition of a2 
 a1
is

g3xða2 
 a1Þ ¼
12r2

1r
2
2jF0j

4b4

a23

sin2 ðma2=2Þ
a22

;

ð8Þ

(c) phase-matching when both steps x þ x ¼ 2x
and x þ 2x ¼ 3x are nonphase-matched, but

a3 ¼ a2 þ a1 � 0. This is the case of THG in

the conditions for direct third harmonic gener-

ation by the process x þ x þ x ¼ 3x. The

optimal phase mismatch for this case is

ðDk2 þ Dk1ÞL ¼ Dk3L ¼ �4m. This result coin-
cides with the optimal Dk shift for the THG

based on direct vð3Þ process [34–36]. The ampli-

tude of the third harmonic field in condition of

a3 
 a1; a2 is

g3xða3 
 a1; a2Þ ¼
12r2

1r
2
2jF0j

4b4

a21

sin2 ðma3=2Þ
a23

;

ð9Þ

(d) the last and most interesting possibility that is

characterized with the highest TH efficiency is
the situation when both steps are simulta-

neously phase-matched a1 � 0, a2 � 0. The ex-

pression for TH conversion efficiency in these

conditions is

g3xða1; a2 6 1Þ � 12r2
1r

2
2jF0j

4b4
sin2 ðma2=2Þ

a22

	 sin2 ðma1=2Þ
a21

: ð10Þ

The optimal deviations from the exact phase-

matching condition for the both steps are equal:

Dk2L ¼ Dk1L ¼ �2m. The expression (10) when

double phase-matching conditions are fulfilled

exceeds the expressions (7)–(9) with the magnitude

of the square of the normalized phase mismatch
ja1j2 or ja2j2 of the ‘‘step’’ that is not phase-mat-

ched.

The main conclusion at this level of consider-

ation is that even at weak focusing it is required

deviation of exact phase-matching conditions in

order to optimize the process of cascaded THG.

The required ‘‘shift’’ from the exact phase-match-

ing is �2m. We verified by direct numerical inte-
gration of Eq. (5) that the analytical formulas

(7)–(10) can be used until m6 1.

3.2. Arbitrary focusing

In this section we consider arbitrary value of the

strength of focusing m and nondepletion approx-

imation for the fundamental and second harmonic
beam.

The efficiency conversion in TH is calculated

from (5) and is found to be

g3x ¼ 3S4

16

Z mð1�2lÞ

�mð1þ2lÞ

expðibDk2g=2Þ
1� ig

�����

	
Z g

�mð1þ2lÞ

expðibDk1s=2Þ
1� is

dsdg

�����
2

; ð11Þ

where S ¼ ffiffiffiffiffiffiffiffiffi
r1r2

p jF0jb.
The dependence of g3x on the four parameters,

describing the system: strength of focusing m, po-

sition of focusing l and conditions for phase-

matching of both steps Dk1b, Dk2bwas investigated.
For maximum THG efficiency it is necessary to

tune both mismatches to their optimal values

ðDk1;Dk2Þ ¼ ðDk1;opt;Dk2;optÞ. This can be seen on

the contour plots shown on Figs. 1(a) and (b) cal-
culated for three different strength of focusing. Fig.

1(a) illustrates the two-dimensional phase-matching
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curveswhen focusing is in the center of the nonlinear

crystal, l ¼ 0 while Fig. 1(b) is calculated for fo-

cusing position l ¼ 0:4, close to the output face of

the crystal. All amplitude distributions are nor-

malized to their maximum.

Figs. 2(a) and (b) allow one to obtain the

maximum g3x for arbitrary values of these four

parameters. Fig. 2(a) shows the dependence of the

efficiency g3x on the strength of focusing m, and

the position of focusing l. The optimal ðDk1bÞopt
and ðDk2bÞopt for each point of Fig. 2(a) can be
found from Fig. 2(b). For example, as seen from

Fig. 1. THG efficiency as a function both phase-matching

conditions ðDk1bÞ and ðDk2bÞ for two different positions of the

focal spot (a) l ¼ 0 and (b) l ¼ 0:4. All amplitude distributions

are normalized to their maximum. Normalized input amplitude

S ¼ 0:3.

Fig. 2. (a) THG efficiency g3x calculated at optimal phase-

matching conditions and (b) optimal phase-matching for both

steps for several values of level of focusingm and the position of

focusing l. Normalized input amplitude S ¼ 0:3.

R. Ivanov et al. / Optics Communications 212 (2002) 397–403 401



Fig. 2(a) point B (m¼ 5, l¼ 0.4, S¼ 0.3 with effi-

ciency g3x ¼ 6:1%Þ corresponds to the following

optimal phase mismatches ðDk1bÞopt ¼ �0:3,
ðDk2bÞopt ¼ �0:9 as can be found from Fig. 2(b).

We found out that in process of cascaded third

harmonic generation in single quadratic crystal
with focused beam, for maximum efficiency the

phase-matching Dk1b and Dk2b have optimal val-

ues, different from 0, and these values are different

for each m and l. However, for best conversion the

optimal position for focusing is in the center of the

nonlinear medium.

In contrast to the process of direct THG where

there is an optimal strength of focusing [34], in the
case of cascaded double phase-matched THG there

is no optimal strength of focusing. As illustrated in

Fig. 2(a) the higher the level of focusing is the

higher the TH efficiency is. The optimal position of

the focal spot is more critical for stronger focusing.

When the optimal position of the focal spot is in

the middle of the crystal ðl ¼ 0Þ then Dk1;opt ¼
Dk2;opt ¼ DfðmÞ and this magnitude depends on the
strength of the focusing. As illustrated in Fig. 2(b)

for deviations of ðDk1;2 � DfÞ the optimal focusing

is in the first part of the crystal when jDk1=Dk2j > 1

and respectively in the second part of the crystal

when jDk1=Dk2j < 1.

4. Account for depletion

For calculating the process of single crystal

cascade THG without neglecting the depletion of

the fundamental and second harmonic beam and

evaluating the area of the applicability of the

nondepleting approach used in the proceeding

sections, we have solved system of Eq. (1) by direct

numerical integration. For this purpose FOR-
TRAN code was written based on the Split-Step

Fourier Method. The base principle of this method

is the assumption that in propagating the nonlin-

ear media over a small distance h the diffraction

and nonlinear effects act independently. The Fast

Fourier Transformation (FFT) algorithm was

used to calculate the diffraction effects and Runge–

Kutta method for the nonlinear effects.
The investigation, carried out in not very high

input fundamental intensities, confirms the results

in Section 3.2 – the optimal position of focusing is

in the center of nonlinear medium with ðDk1bÞopt
and ðDk2bÞopt and there is no optimal strength of

focusing.

Fig. 3 calculated for m ¼ 1, m ¼ 3 and m ¼ 5

allows establishing maximum normalized intensity
of the semi-analytical approach described in Sec-

tion 3.2. We may conclude that this approach can

be used for normalized fundamental beam ampli-

tudes S6 0:3. Also it is seen when S > 0:3 and the

depletion effects are taken into account, the max-

imum conversion practically does not depend on

the strengths of focusing. As we already note in

[29–32] is proved in case of plane wave approxi-
mation that the maximum efficiency depends on

the ratio of the two second order nonlinearities

responsible for each of the steps of this double

phase-matched cascaded interaction for THG and

one has to use the optimal value r1=r2 ¼ 1:53 for

100% efficiency. Our numerical calculations of

THG with focused fundamental beam shown on

Fig. 3 compare two different cases (i) nonoptim-
ized ratio of nonlinearities for r1 ¼ r2 and (ii)

optimized ‘‘plane wave’’ value r1 ¼ 1:53r2. We see

that the choice of the optimal ‘‘plane wave’’ value

gives efficiencies close to 90%.

Fig. 3. THG efficiency as a function of normalized input am-

plitude. Solid line, calculations with the semi analytical ap-

proach given in Section 3.2. Dashed line, direct numerical

integration of system (1) for the case r1 ¼ r2. Dot-dashed line,

direct numerical integration of system (1) for the case

r1 ¼ 1:53r2.
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5. Conclusion

In conclusion, we present both analytical and

numerical investigation of the process of cascaded

THG in single quadratic crystal in condition of
simultaneous phase-matching of both steps and

focused fundamental beam. If the design of the

nonlinear media allow tuning the phase-matching

conditions to its optimal values, then the optimal

focusing is in the center of the crystal. If the phase-

matching parameters are fixed and they deviate

from the optimal values, then the optimal position

of the focus spot should be calculated according
the analysis presented here.
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