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Abstract. We present a brief overview of different methods for simultaneous phase-matching of severa
parametric opticad processes (the so-cdled multistep cascading) in engineered structures with the modulated
second-order nonlinea susceptibility. In particular, we discuss the posshili ty of double phase-matching in both
uniform and non-uniform quasi-phase-matched (QPM) periodic optica superlattices and also in the recently
fabricated two-dimensional nonlinea photonic crystals. We include dso some original results demonstrating the
possbility to achieve double-phase-matching with phase-reversed and periodicdly chirped QPM structures and
also with uniform QPM structuresin non-collinear geometry.

1. Introduction

Nonlinea effects produced by quadratic (or )((2)) intensity-dependent response of a transparent
dielectric medium are usually associated with parametric frequency conversion such as the second
harmonic generation (SHG). However, recant theoretical and experimental results demonstrate that
guadratic nonlinearities can also produce many of the effects attributed to norresonant Kerr
noninearities via cacading of several sewmndorder parametric processs. Such semndorder
cascading (SOC) effects can simulate the dfective third-order processes and, in particular, those
associated with the intensity-dependent change of the medium refractive index [1]. Importantly, the
effedive (or induced) cubic nonlinearity resulting from SOC in a quadratic medium can be of the
several orders of magnitude higher than that usually measured in centrosymmetric Kerr-like nonlinear
media, and it is practicaly instantaneous. The simplest type of SOC is based onthe simultaneous
adion d two second-order parametric sub-processes that belong to a single second-order interaction.
For example, the so-cdled two-step cascading associated with type | second-harmonic generation
includes the generation of the second rarmonic (SH), w + w = 2w, followed by the reconstruction of
the fundamental wave through the down-conversion frequency mixing process 2w-w =w. These
two sub-processes depend only on a single phase-matching parameter Ak. In particular, for the

noriinear)((z) media with a periodic moduation of the quadratic nonlineaity, i.e. the so-cdled quasi-
phase-matching (QPM) structures [2], we have Ak =k, -2k +G,, where k =k(w),

k, = k(2w) and G, is aredprocal vedor of the periodic structure. For a homogeneous bulk )((2)

medium, wehave G, =0.

Multistep cascading (MSC) is another type of the SOC processes, it involves sveral different
sewndorder nonlinear interactions and is characterized by at least two dfferent phase-matching
parameters [3-10]. For example, two parent processes of the so-caled third harmonic MSC [3,4] are
SHG, w+ w = 2w, and sum-frequency mixing (SAM), w+ 2w =3w. Here, we may distinguish five
harmonic sub-processes, namely w+w=2w, 2w+tw=3w, 3wW-2wWw=w, 3wW-wW=2w,
2w—w=w, and MSC resultsin their simultaneous action. In such a cae, MSC is characterized by
two phase-matching parameters, Ak, =k, =2k, + G, and Ak, =k; -k, -k, +G, , that allow

to control the nonlinear interaction in a broader parameter region.

Different types of MSC processs include third harmonic MSC [3,4], two-colour MSC [5-9],
fourth harmonic MSC [10], SHG and difference-frequency-generation MSC [11], etc. Various
applications of MSC processs have been mentioned in the literature. In particular, MSC can support
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multi -comporent solitary waves [4,6,79], it usualy leads to larger accumulated nonlinea phase shifts,
in comparison with the simple SHG-based cascading [3,§, it can be effectively employed for the
simultaneous generation of higher-order harmonics in a single quadratic crystal [12,13], and also for
the generation of a aosspaarized wave [5,9] and frequency shifting in fiber optics gratings [11].
Simultaneous phase-matching of several parametric processes cannot be ahieved hy the
traditional methods such as those based on the optical birefringence effect. However, the situation
bewmes different for the media with a periodic change of the sign o the quadratic nonlineaity, as

occurs in the QPM structures [2] or two-dimensional (2D) )((2) norlinear photonic aystals[14-16]. In

this paper, we describe the basic principles of simultaneous phase-matching of two (or more)
parametric processes in dfferent types of 1D and 2D nonlinear optical superlattices.

2. Uniform QPM structures

In a buk homogeneous norinear crystal the quadratic
noninearity is usually constant everywhere. Severd
methods [17] have been suggested and employed in order
to create a periodic change of the sign o the second-order

nonlinear susceptibility d(z)in QPM structures as shown
in Fig. 1. From the mathematical point of view, such a
periodic sequence of two domains can be described by the
periodic function

d(2) =d, Y gnexbliGnz), @ .
mz0 Fig. 1
O = (2/mm)sinGmD), @
where Gm = 2nm/ /\ is the m-th redproca vedor of the QPM structure. The uniform QPM
structure is characterized by a set of the reciprocd vedors: * 2T7/A, + 41/, 2 6TI/A,

+ 87'[//\ , ..., Which can be used to achieve the phase-matching conditions provided Ak - 0. The

integer number m (that can be both positive and negative) is cdled the order of the wave vetor phase-
matching. According to Eq. (2), the smaller is the order of the QPM reciprocal wave vedor, the larger
is the effedive nonlinearity. If the filling fador D = 0.5, the dfedive quadratic nonlinearities

(proportional to the parameter dogm) that correspord to the even orders QPM vedors vanish.

Importantly, such uriform QPM structures can be used for simultaneous phase-matching of two
parametric processes when the interading waves are @llinea or norcollinear to the reciprocal wave
vedaors of the QPM structure.

A. Callinear case (two commensur able periods)

As an example, we take the third hamonic MSC process under the condition that the interacting
waves are collinear to the reciprocal wave vedors of the QPM structure. We dencte the mismatches
of the nonlinear material without moduation o the quadratic nonlinearity (“bulk mismatches’) as

Aby and Abs, (i.e., Ab, =k, —2k; and Ab, = k3 —Kky —k;) and chocse the period /A of the QPM
structure in order to satisfy the phase-matching conditions Gy, = ~Ab, and G, =-A4b,. Two
proceses, SHG and SFM, ae daaderized by the wavevedor mismatches
Ak =k, =2k +G,, =0 and Ak, =k3—k, =k +G,,, =0, respectively, and they bewme

simultaneously phase-matched for this particular choice of the QPM period. A drawback of this
method s that it can satisfy simultaneously two phase-matching condtions for discrete \alues of the

optica wavelength only. The values of the fundamental wavelength A for the dowle phase-
matching condtion can be foundfrom the relation



59

Ab, /m, — Ay /my =0, 3
since both Ab; and Ab2 are functions of the wavelength. For the third harmonic MSC process, Eq.
(3) is transformed to ml[3n(3/\) —2n(2A)- n(/\)] - 2mz[n(2)\) - n(/\)] =0, where N(A) is the
refractive index. For a chosen pair of integer numbers (ml,mz) the QPM period N is found from

the relation A = 2mm /Aby| or A= 27dmZ/Ab2\ Such a method was used for double phase-
matching by several authors, (e.g. [18-21]).

B. Non-collinear case

Callinearity between the optical waves and the reciprocal

vedaors of the QPM structure is an important requirement

for achieving a good overlapping of al the beans and a !nput waves
good conversion efficiency. However, phase-matchingis

possible even in the cse when some of the waves ange of 0]
propagate under a certain angle to the diredion o the  onogllineaity
reciprocal vedors of the QPM structure, i. e. for the non- Fig. 2

collinea case. The alvantage of this method is that

doule phase-matching can be redized in a broad spectral range. Such a type of norcollinear
interaction will be efficient for the distances corresponding to the overlap of the interading beams.

Let us consider the third harmonic MSC process in this type of geometry (see Fig. 2). As has
been discussed above, the simultaneous phase-matching of two parametric processes w + w = 2w and
w+20=3w is re
quired in this case. We k]_ k ¢
assuume the fundamental —p— G
wave & the input. As k2 m
shown in Fig. 3, for the
first process the phase- sz
matching is adhieved by ]
the redprocd vedor Fig. 3 K
Gmland the generated 3

SH wave with
wavevedor Ko is nat Phase Matching with Noncollinear QPM for
collinea to the third-harmonic MSC in LTN

fundamental wave:
2k, +Gp, =k,.  The
second pocess is phase- | period, A(um)
matched by the vedor — ¢ (rad)
sz : mi=m»,=1
ky+k, +Gp, =Ks. 27
From Fig. 3 we ca 11

cdculate the period d the 0 ; : :
QPM  structure  that 1 15 2 25 3

alows acieving doube fundamental wavelength, pm
phase-matching o the Fig. 4
two processes,

» (6] [o)]
|

w
|
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- J 2(k§ = okP)my = (kg = akP)(my +my) “

(my +my)(zm, —my)m,
An example of double phase-matching for the third harmonic MSC processin LiTaO; for the case
when al the waves are polarized along z axis of the crystal is srownin Fig. 4 (r’rh =m, :1)

3. Non-uniform QPM structures

Nonuniform QPM structures give dso the possibility of simultaneous phase-matching of two
parametric norlinear-opticd processes. We ansider threetypes of such nortuniform QPM structures:
phasereversed QPM dtructures [22], periodicdly chirped QPM structures [23], and opticd
superlattices [12,2425].

A. Phase-reversed QPM structures

The ideaof the phase-reversed QPM structures [22] isillustrated in Fig. 5. Such a structure can be
explained as a sequence of many equivalent uniform short QPM sub-structures with the

Iength/\ph/z conrected in such away that at the place of the joint two end layers has the same sign

of the quadratic norlinearity. Any two neighbaing junctions have oppaite sign of the
X(Z)noriinearity. By other words, the phase-reversed QPM structure is a kind of an uriform QPM

structure with a change of the domain phese by 7T characterized by the other (larger) period /\ph .
AQ

<+

i H H
I

- + - + - +
Fig. 5

The moduation of the quadratic nonlineaity d (Z) in the phase-reversed QPM structure with
thefilling factor D = 0.5 can be described by the response function

d(2) = d, (- 1)int(22//\Q)(_ 1)int(2y/\ph) -
and can be presented in the form of the Fourier series,
_ L e | _(FO_ O (iGmz) 2
d(2) = d @ge(q) @gme =d,§ gne®®mg 1,m#0, ©
0 . I E . E o? I =
2rt 2rm G :E|+£m

2
where g =——, Om =9 9m, G = , Fm= ' N
mrt /\Q /\ph Q ph
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The phase-reversed QPM structure is characterized by a set of the reciproca vedors {G|m},
which are mllinear to the norma of the periodic sequence with the magnitude depending on all
parameters: I, m, /\Q, /\ph. Two o these vedors can be chosen to phase-match two parametric

processes involved in the MSC, such that G, = ~Ab; and G, ==A4D,. Then, the two QPM
periods stisfying the double-phase-matching condtion are defined as:

277( oMy — 1m2)| Aot |27T(|2ml_|1m2)| @
myAb, - mAb, | | 1,40, -1,4b, |
For the aase of the third harmonic MSC Egs. (7) are transformed into
A :‘ /\(|2ml‘|1m2) | )
© 7 |(my = 2mpn(2)+ 2(my + mp)n(24)-3mn(3A)
| ( 2y — 1m2) )
" (- 2,)n(A)+ 2(; +1,)n(24)-3;n(32)

In addition to Egs (8) and (9), we shoud satisfy the cmndtion that the ratio 2/\F,h//\Q isan

integer number and, therefore, this method daes not allow adhieving doulde-phase-matching for any
wavelength. Nevertheless the arresponding number of the phase-matched wavelengthsis larger than
that achieved in the uniform QPM structure and for collinear beams (see the method described in Sec
2A).

B. Periodically chirped QPM structures

Periodically chirped QPM structures have been designed for increasing an effective (averaged) third-
order nonlineaity in quadratic media [23]. The termindogy “periodically chirped QPM” is used in
analogy with the chirped QPM structures that has alinea increase of the period /\Q along the crystal.

The periodicaly chirped QPM structure is characterized by the QPM period /\Q that is a

periodic function of z (seeFig. 6):

T e e T S N
0.
] 5 10 157 o] 25 30
.
o Ll a1 py ool
/\ch .
< > Fig.6
A =g+, cod2mz/Ay,). (10

The correspording formulas for doudle phase-matching alow to find the two periods of the
periodicaly chirped QPM structure, similar to the case of the phase-reversed QPM structure,
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_ 271(|2ml =-lym, )| (1) Periods for third-harmonic MSC in LiTaO3
_ ’ with periodically chirped QPM grating
m,Ab, mlAbz‘ 100
80 +
A = |27t{lmy —1ymy ) 1 E 60
2 b_l. 1442 < 40 1

The main advantage of such periodically 20 |
chirped QPM structures is the possibility to
satisfy double phase-matching condtions for
any wavelength in a broad spectral range (i.e.

for any par Abjand Aby). Calculated Fig. 7

periods for a poled LiTaOs; crystal are
presented in Fig.7.

0

0.5 1 15 2
A, pm

C. Quasi-periodic and aperiodic optical superlattices

Ancther method of double-phase-matching, investigated both theoreticdly and experimentally is
based on the use of the quasi-periodic optical superlattices (QPOS) [12,24,5] and aperiodic optical
superlattices [26,27]. In the most of the cases QOPSs are built with two-comporent blocks (A and B)
aligned in a Fibonacci (or more general quasi-periodic) sequence (see Fig. 8). Each o the blocks
consists of two layers with the opposite sign o the

guadratic nonlinearity. We illustrate the possibility of I—B

doule-phase-matching in such a kind of structures A
taking, as an example, the structure consisting of two )\ A\
blocks aligned in a generaized sequence [25]. The

moduation of the quadratic nonlinearity d(z) can be
described hy the following Fourier expansion [28,29): A B

d(2)=do ) fmn exr{iGm,nz)
m,n
where the reciproca vedors are defined as Fig. 8

Gmn =2(M+NT)/S ana S=1Lp + L.

;o (13

For phase-matching of two processes with bulk mismatches AB, and Ab, , we solve the system
of equations

Gyn, =27(My +ny7)/S= Ay, (149)

G, n, = 2T(My +1,T)/S = Ab, (14b)
andfind Sand T . Exact valuesfor L4, Lg and the lengths of the layers have to be found by

maximizing fml,nl and fmz,nz . This gructure alows smultaneous phase-matching in a broad

spectral range without constrains on the ratio Aby /Aby . Equations (14) are dso valid for Fiborecd
type QPOS but, since T is fixed, double phase-matching can be satisfied for a limited number of the
wavelengths [25] such that defined by Ab, /Ab, = (m, +n,t)/(m, +n,7).

In the recent papers [26,27], aperiodic optical superlattices were used for simultaneous phase-
matching of several processes. In thisapproacd, the thicknessof the layers and their consequences are

directly found ly solving the inverse source problem maximizing the dficiency of both the processes
involved into the M SC interaction.
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4. 2D)((2)nonlinear photonic crystals

Nonlinear phatonic crystals (NPCs) with
homogeneous (linear) refradion index and 2D
periodic lattice of the quadratic nonlinear
susceptibility can be effectively employed as a
host media for many different types of the MSC
processs [14-16]. A schematic diagram of 2D
NPC is diown in Fig. 9. The smple way to
obtain the phase-matching condtions for 2D NPC

is to use a reciprocal lattice formed by vedors G,and G, defined as |G,|=2m/A, and

G| = 211/ A\, . For ahexagon lattice, we find A, = A, =ay/3/2, where a is the distance between the

centers of two neighbaring inverted volumes. All reciprocal vectors of the 2D NPC crystal are formed
by asmplerule, G, , =mG; +nG,. Any two vedors of this st can be used to compensate for the

buk mismatches Ay and AD,, however such phese-matching condtions can be fulfilled for
norcollinear interactions only. Phase-matching conditions for the third harmonic MSC process are
shown in Fig. 10 (a) for the process w + w = 2w phase-matched by the redprocd vedor G MmNy and

(b) for the process w+ 2w = 3w phase-matched by the redprocd vedor G my,n, - Phase-matching is

adhieved by choasing the lattice spadng a and the angle of incidence 8. 2D NPC can be aso used

for simultaneously phase-matching of three norlinear processes, e.g. second, third, and fourth harmonic
generation [16]. Experimentally, the simultaneous second-, third-, and fourth-harmonic generation was
reaently observed in poled LiNbO; 2D NPC [15].

2 2 sz,n

Fig. 10
5. Conclusions

We have presented a brief overview of different tedhniques for adiieving simultaneous phase-
matching of severa nonlinea parametric processes in ogicd media with a moduated second-order
nonlinear susceptibility. In all those cases, the double-phase-matched interactionis possible in awide
region d the optical wavelengths provided the QPM structure used to achieve the phase-matching
condtions possesses one extra parameter (e.g., the moduation period in chirped QPM structures, or
the seocond dmension, in 2D noninear photonic crystals). Some of the possible applications of the
doule-phase-matching processes include simultaneous generation of several optical frequenciesin a



64

single structure, multi-port frequency conversion, etc. The results presented above ook encouraging
for experimental feasibility of the predicted effects in the recantly engineeed 1D and 2D periodic
optical superlattices.
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