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We propose a novel type of cascading parametric interaction for generating a nonlinear phase shift in dielectric
media with a quadratic nonlinear response based on two-frequency wave mixing of the fundamental and

second-harmonic waves.

Self-phase modulation of the fundamental wave results from a cascading process

consisting of four second-order subprocesses, the direct and reverse subprocesses of Type I second-harmonic

generation (SHG) and the direct and reverse subprocesses of Type II SHG.

It is found analytically and nu-

merically that the fundamental wave passing through a quadratic medium, tuned for simultaneous near phase
matching for these two processes, collects 60% more nonlinear phase shift than does the corresponding two-
step cascading. We also obtain the conditions for stationary waves (nonlinear modes) supported by such mul-
tistep cascading processes. © 2000 Optical Society of America [S0740-3224(00)01405-3]

OCIS codes: 190.0190, 190.4360, 190.4380, 190.5940, 200.4740.

1. INTRODUCTION

It is well recognized that two-step second-order [or
X% 1 x'?] cascading provides an efficient way to generate
an effective nonlinear phase shift for all-optical switching
devices.!™®  x®:x? cascading allows all-optical switch-
ing to be achieved at pump levels substantially lower
than those in centrosymmetric media with the highest
known cubic nonlinearity.* A further search for methods
to reduce the switching intensity is crucial for future ap-
plications of all-optical switching devices based on y®:
x'? cascading. The switching intensity is usually related
to the intensity necessary for achieving a nonlinear phase
shift (NPS) of 7 or #/2, depending on the type of the de-
vice. The larger the efficiency of the NPS generation, the
lower the switching intensity is.

Some methods for enhancement of the NPS by second-
order cascading in quadratic nonlinear media were sug-
gested recently.?® In Ref. 5, the use of a nonlinear
frequency-doubling mirror, for which an increase in the
NPS comes from a two-way pass of the fundamental beam
through a nonlinear crystal, was proposed. In Refs. 6
and 7 use of aperiodic quasi-phase-matching structures
was suggested. A different approach was suggested in
Ref. 8, which reported achievement of NPS enhancement
by multistep cascading (MSC) of several second-order pro-
cesses. The third-harmonic MSC scheme suggested in
Ref. 8 involves two nearly phase-matched upconversion
x'? processes: second-harmonic generation (SHG) by a
Type I process and third-harmonic generation by sum-
frequency mixing of the fundamental and the second-
harmonic waves. Self-phase modulation of the funda-
mental wave is a result of cascading of three or four
second-order subprocesses: (1) w + 0w = 20w, o + 2w

0740-3224/2000/060959-07$15.00

= 3w, and 3w — 20w = w or (i) v + w = 20, w + 2w
= 3w, 3w — v = 2w, and 20 — v = w. However, this
method requires that the nonlinear media be transparent
for all three waves (1w, 2w, 3w).

Another type of efficient interaction that is based on
two simultaneously nearly phase-matched x'? processes
was proposed by Assanto et al.? This device cannot work
in a single-input-wave regime, and it requires accurate
control of the phase difference between the input waves.
The parameters of the switching device suggested by As-
santo et al.® must be compared with those that result
from the interaction that uses generation of a NPS by
Type II SHG,'>! which is also a two-input device.

In this paper we analyze a novel MSC scheme that
comprises frequency conversion and multistep cascading
in a single-input-wave regime. The MSC effect is a re-
sult of simultaneous action of one upconversion and one
downconversion x?’ process. The former process is Type
I SHG with input fundamental wave A, which generates
second-harmonic wave S, i.e., AA—S. The latter process
is the generation of orthogonal component B at the funda-
mental frequency by the complimentary process, SA—B.
We show that this kind of twocolor MSC has interesting
properties. In particular, it can yield an increase in the
NPS of the fundamental wave and, as a result, reduction
of the switching intensity. Moreover, under certain con-
ditions one can achieve a linear dependence of the NPS on
the input fundamental field. The optimal mismatches of
the two processes are found. A similar scheme, for the
properly chosen phase mismatches of the two processes,
leads to efficient generation of the orthogonal polarization
of the input fundamental beam.!? We also show that
MSC can support phase-locked stationary states of
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parametric-wave interaction in the form of stable nonlin-
ear modes.

2. CONCEPT OF TWO-COLOR MULTISTEP
CASCADING

We assume that linearly polarized fundamental wave A
enters a quadratic nonlinear medium that is transparent
at both the fundamental and the second-harmonic fre-
quencies. By the appropriate choices of the fundamental
wavelength and the quasi-phase-matched grating
period, >** simultaneous phase matching for Type I and
Type IT SHG can be achieved. The MSC process starts
with the generation of second-harmonic wave S by the
Type I SHG process, i.e., AA-S. By difference-frequency
mixing, fundamental wave B with polarization orthogonal
to that of wave A is then generated. Waves S and B are
involved in a number of chains (cascades) of parametric
interactions that reconstruct depleted fundamental wave
A. The most important MSC chains are the following
(see also Ref. 15):

(i) AA-S, SA-A;

(i) AA-S, SA-B, SB-A;

(i) AA-S, SA-B, AB-S, SA-A;
(iv) AA-S, SA-B, AB-S, SB-A,

where chains (i), (i), and (iii)—(iv) are two-, three-, and
four-step x'? cascading processes that mimic x®, y®,
and x'7 self-action effects, respectively, in a quadratic
nonlinear medium. As shown below, higher-order self-
action effects have a strong influence on the process of
generation of the NPS by the fundamental wave.

In the slowly varying envelope approximation the re-
duced amplitude equations for the simultaneous action of
Type I and Type II processes for SHG with linearly polar-
ized plane waves in lossless quadratic media can be writ-
ten as follows (see details in Ref. 12):

ds

e —i01A% exp(iAk12) — 2i09AB exp(iAkyz), (1.1)

da

. = —i01SA* exp(—iAkiz) — 109SB* exp(—iAksyz),
(1.2)

dB

e —109SA* exp(—iAkyz), (1.3)

where S, A, and B are the complex amplitudes of the
second-harmonic wave and of the two fundamental or-
thogonally polarized waves, respectively; Ak; and Ak, are
the phase mismatches for the two processes. Nonlinear
coupling coefficients o; and oy are proportional to the ap-
propriate x'? tensor components. Other possible inter-
actions such as higher-harmonic generation and BB-S
interaction are neglected, e.g., because the x'?) tensor
component that is responsible for the process is negligible
or because of the large value of the corresponding phase
mismatch.
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3. SINGLE-INPUT-WAVE REGIME

First we consider the case when only one wave, funda-
mental wave A, enters a quadratic crystal, and our pri-
mary goal is to find the NPS of this wave at the output of
the crystal. Equations (1) cannot be integrated analyti-
cally, and their solution can be obtained by numerical in-
tegration only. An approximate analytical solution for
the NPS that will help us to discuss the physics of MSC
can be obtained by use of the approximation of negligible
pump depletion of wave A as described below.

A. Approximate Analytical Results

Using the substitutions S = S exp(iAk;z) and B
= B exp(iAkz), where Ak = Ak; — Aky, we can trans-
form Eqgs. (1) into the following equations:

ds N -
. + iARS = —i01A% — i20,BA, (2.1)
dA _ -
E = _iUISA* - iUzB*S, (22)
dB - _
- + iARB = —ioySA*. (2.3)

To employ the perturbation-theory approach, we first
assume that A does not depend on z. This allows us to
find the amplitudes of second-harmonic wave S and fun-
damental wave B in an explicit analytical form. Indeed,
with the assumption that |ARL|> 1, we have B
= —03SA*/Ak. Then, integrating Eq. (2.1), we obtain

= —0,A%[1 — exp(—iQ2)]/Q, 3)
o109/APA[1 — exp(—iQz)/QAE, 4

eIV

where @ = Ak, — 205%A|%/Ak.

The result [Eq. (4)] for B indicates that the generation
of the orthogonal polarization wave can be understood to
be a result of the effective four-wave mixing process that
corresponds to the cascading process AAA—B.2 If now,
in the second-order approximation, the amplitude of wave
A is taken as A = a explig(z)], we obtain for the nonlin-
ear phase shift Aoy = @4(L) — ¢4(0) the following re-
sult:

Agy = Agp>® + Ag)™C, (5)
where TSC means two-step cascading and
2.2 :
o1°a”L sin(Qz)
A(PESC — - —, (6)
Qz
201205%a*L sin(@z)
AhSC = 3 - . (7
QAR Rz

Results (3)—(7) show (this has been confirmed by nu-
merical integration) that the amplitudes and the NPS
of the three waves are, respectively, symmetric and
antisymmetric functions with respect to vector v
= (Akq, Aky). For example, a(Akq, Aky) = a(—Akq,
—Aky)  and  A@pus(Akq, Aky) = —Aps(—Aky, —Aky).
This is an important finding for all-optical switching de-
vices that employ two nonlinear media, for which the re-
quirement is that the NPS in the two media have opposite
signs.
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Two terms in Eq. (5) have a clear physical meaning.
The first term (proportional to a2) is the NPS that is due
to the x'?-induced cascaded cubic nonlinearity, and the
second term, which is proportional to a*, should be attrib-
uted to the y'-induced fifth-order cascaded nonlinearity.
This fifth-order nonlinearity is a direct manifestation of
the MSC effect in this double phase-matched process.
We can confirm such an interpretation by considering the
double-cascading limit of the system of Eqs. (2). Indeed,
when simultaneously |ARL|> 1 and |AkL|> 1, we
have |QL| > 1 and S = —0,A2%/Q. In this limit, Eq.
(2.2) includes an effective cubic—quintic nonlinearity

o 01’05’
— —i—]APA - i—5—A]"A =0, (8)
dz Q QAR
and the double-cascading limit for the NPS yields
0'12(12 20’22(12) ( )
Apy ~ 1+ , 9
PA Q QAk

which is in accordance with formula (5).

From Eq. (8) it can be seen that, in this limit, the MSC
process can be modeled by an effective nonlinear model
with competing cubic and quintic nonlinearity whose
magnitudes and signs are controlled by the two phase-
matching parameters Ak; and Aky. This kind of nonlin-
ear medium is known to support solitary waves.'®17 The
centrosymmetric crystals with the third-order TSC pro-
cesses also allow the sign and the relative contribution of
the fifth-order effect to be controlled.'®-20

The validity of the approximate analytical solutions,
derived in the limit |Ak,| > |Ak;|, has been verified by a
comparison with the numerical solution of the full system
of Egs. (1). The result of this comparison is shown in Fig.
1 for o1 = 09 = 0. The approximate solutions can be
used up to power levels caLl =~ 1. Result (5) for the NPS
owing to MSC provides a better approximation then the
previously published approximate analytical solution.®
Similar analytical expressions for the NPS of fundamen-

A, (rad)

Ak L

Fig. 1. Nonlinear phase shift Ag, of fundamental wave A as a
function of the phase mismatch of the Type I SHG process.
Dashed—-dotted—dotted curves are analytical results [Eq. (5)];
solid curves are numerical solutions of the system of Egs. (1).
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tal wave A can be derived for the other cases, |Ak|
> |Aky| and |Ak4|, |Aks| > |AE|. They show also that,
at low input powers of fundamental wave A (i.e., when
oa < |Ak4|, |Aky|) the contributions of TSC and higher-
order MSC can be separated. The analytical results ob-
tained above can be used to describe the NPS for passive
mode-locking applications, for which quadratic media
with second-order cascading are employed for Kerr lens
mode locking or in nonlinear mirror configurations.®21-22
However, the NPS’s of the amount of 7 or #/2 that are re-
quired for all-optical switching applications can be ob-
tained at the input powers for fundamental wave A that
cannot be described by the proposed analytical approach.
Therefore, for the next steps of our analysis we employ
numerical simulations.

B. Numerical Results

The behavior of intensity transmission a?/a?(0) and the
phase shifts at arbitrary input power and mismatches
Ak, and Ak, were obtained by solution of Eqgs. (1) nu-
merically. For simplicity, we take o; = 09 = 0. Nu-
merical analysis of the NPS of the fundamental wave as a
function of the pair of mismatch parameters (Ak;,Ak5)
reveals that, at certain values of Ak; and Ak,, a strong
self-action effect combined with almost 100% transmis-
sion of the fundamental beam is possible. Figure 2
shows typical examples of such dependencies, where a
NPS with magnitude = [Fig. 2(a)] or #/2 [Fig. 2(b)] is ob-
tained for an input normalized intensity ( o1aL)? equal to
29 or 11.5, respectively. In the same figure we show, for
comparison, the phase shift that can be achieved from
second-order TSC employing the Type I SHG process.
The value of the Type I SHG phase mismatch for this
comparison was chosen such that the first point of the
fundamental reconstruction is at the same input intensity
as for the corresponding two-color MSC scheme. It is
clearly seen that the presence of the second phase-
matched interaction permits a substantial increase of the
collected NPS:  A@X¥S%A IS¢ = 1,58 for the conditions
suitable for collecting the NPS value #/2 and
AeYSC/A@TSC = 1.64 for the conditions suitable for col-
lecting the NPS value .

For some of the mismatches that are favorable for col-
lecting /2 NPS it is possible to obtain the dependence of
the NPS as a function of the input amplitude that is close
to linear, in combination with almost no depletion of the
fundamental wave [see Fig. 2(b)]. For such values of the
phase mismatch, the resultant NPS for fundamental
wave A is due to a strong energy exchange between fun-
damental wave B and second-harmonic wave S. This
property of MSC schemes is in a sharp contrast to the
same dependence when only TSC of second-order pro-
cesses is employed. In the latter case, the dependence of
NPS on input amplitude has a stepwise character.>?

From the point of view of practical realizations it is use-
ful to compare the switching intensities of the devices
that are based on the MSC interactions and those that
use a single Type I SHG process. The two-color MSC
scheme investigated here has lower switching intensities
than that reported in Ref. 8 for the third-harmonic MSC
scheme. However, for calculating the gain in terms of
the switching intensity with respect to all-optical switch-
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ing devices based on the Type I SHG process, one has to
introduce some simple criteria. In this paper, as a crite-
rion for such a comparison, we take the transmission of
the Mach—Zehnder interferometer (MZI) with one nonlin-
ear medium (7 NPS is required) and with two nonlinear
media (7/2 NPS is required). If we chose for the ON po-
sition a MZI transmission of 95% or more, the reduction
of the switching intensity as a result of the use of the
MSC is 2.1 times for conditions suitable for collecting /2
NPS and 2.7 times for conditions suitable for collecting =
NPS. In the research reported in Ref. 8 the criterion of
99% transmission was used, and the switching intensity
for type I SHG was larger than for 95% transmission. In
contrast, the MSC switching intensity is almost indepen-
dent of the transmission criterion that is applied.

Figure 3 shows the values of the suitable mismatch pa-
rameters (Ak;, Aky) for which the fundamental intensity
reconstruction is more than 90% and the obtained NPS is
close to 7 (darker-colored curves) and to /2 (lighter-
colored curves). This figure is plotted for normalized
switching intensities ( oaL)? = 11.5 for a MZI with two
nonlinear media and ( ocaL)? = 32.5 for an asymmetric
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Fig. 2. Nonlinear phase shift and the intensity transmittance of
fundamental wave A as a function of its normalized input ampli-
tude for the two-color MSC scheme (solid and dashed curves) and
for Type I SHG (dashed—dotted—dotted curve). The chosen
phase-mismatch parameters are for collection of (a) = NPS or (b)
/2 NPS at the point of full reconstruction of the intensity of fun-
damental wave A.
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Ak,L

Fig. 3. Values of the phase mismatches for achieving = NPS
(darker-colored curves) and #/2 NPS (lighter-colored curves).
The switching intensities I, = (oaL)? are indicated as well.
Only data for which the transmittance of the fundamental wave
is more than 0.9 are shown.

MZI with one nonlinear medium. For all points shown in
Fig. 3 the transmission of the MZI is more than 90%. As
is clearly seen, the tuning for the mismatch parameters
(A%, Ak,) is not critical. Moreover, the bandwidth is of
the same order as that for the SHG process in the chosen
medium.

For an experimental realization of simultaneous phase
matching of Type I and Type II SHG processes for SHG
we can suggest several methods that were discussed pre-
viously in Refs. 12 and 15. The first method uses angle
phase matching for the one of the processes and quasi-
phase matching for the second process.'* The second ap-
proach is based on the use of two commensurate periods
of the quasi-phase-matched periodic grating. For ex-
ample, one can employ first-order quasi-phase matching
for one parametric process and third-order quasi-phase
matching for the other parametric process. Our calcula-
tions were made for the nonlinear crystal LiNbOj, and
they show that, for the fundamental wavelength of 1.55
um, simultaneous phase matching of the Type I and Type
II SHG processes can be achieved in a single quasi-phase-
matched grating with period A = 30.5 um. The other
method for achieving the conditions for double phase
matching is based on the idea of a quasi-periodic grating.
As was recently shown experimentally?® and
numerically,?* Fibonacci optical superlattices provide an
effective way to achieve phase matching at several incom-
mensurate periods to permit multifrequency harmonic
generation in a single structure.

4. NONLINEAR MODES AND STATIONARY
PROPAGATION

In this section we consider the situation in which all three
waves, the two fundamental waves and the second-
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harmonic wave, are nonzero at the input of the crystal.
Using, as an example, the MSC system investigated here,
we demonstrate that such double phase-matched para-
metric processes support the propagation of phase-locked
stationary states in the form of nonlinear modes.

Let us rescale the system of Egs. (1) by introducing nor-
malized stationary amplitudes A, , B,,, S, and hy, hp,
h g—the rates of collection of nonlinear phase shifts by the
three waves—as follows:

01AL = A, exp[i( ¢4 + haé)],
01BL = B, exp[i( ¢o + hpé)],
01SL = S, exp[i(2¢4 + hgé)], (10)

where ¢4 is the input phase of wave A and ¢ = z/L. If
ha, hp, and hg are connected to the phase mismatches
by the relations

hs — 2hy = Ak L, hs — ha — hg = AkyL, (11)
Eqgs. (1) are transformed into
ds,
i— — hgS, — A2 — 2BB,A, =0, (12.1)
dé
dA,
id—§ — hsA, — S,A; — BSyBr =0, (12.2)
i—— — hpB, — BSLAY =0, (12.3)

dé

where B = og9/0.

For the situation when the amplitudes A4,,, B,,, and S,,
correspond to the stationary values A, B, and S, re-
spectively, the derivatives in Eqgs. (12) vanish, and we find
directly the expressions for h,, hp, and hg and the two
phase mismatches that will ensure the stationary propa-
gation of all three coupled waves:

Bst) Si - Aft
ARL =1+ 28— |—— + Sy, 13.1
! lBAst Sst . ( )
2 2
AboL = 1+ﬂBSt) Sst_Ast n BAst (S2 —Bz)
? Ast Sst SstBst . s

(13.2)

The meaning of the results of Eqs. (13) is that, for each
set of the input amplitudes (A, B, S«), they define the
wave-vector mismatches Ak{L and Ak,L of the Type I
and Type II SHG processes when there is no energy ex-
change between the waves. For example, for the station-
ary propagation of the waves A, B, and S, with the nor-
malized amplitudes A, = By = S = 1 and also B8 = 1,
the mismatches must take the values Ak;L = 1 and
AkoL = 0. There is a simple connection between the
signs of the amplitudes (phase of the input waves) and
the stationary-phase mismatches: a simultaneous
change of the signs of amplitudes A and B, does not
change the magnitudes and signs of Ak; and Ak,; a
change of the sign of S leads to a change of the signs of
both A%k, and A%k,. Figure 4 shows the dependence of
the phase-mismatch parameters and the nonlinear phase
shift A4 = h, on the input amplitude of fundamental
wave A.
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st
Fig. 4. Dependence of the NPS of fundamental wave A and
phase mismatches Ak,L and Ak,L on the input amplitude of
fundamental wave A in a regime of stationary-wave propagation.
The normalized input amplitudes of waves B and S are B = 1
and S, = 1, respectively (o = 09 = o).

st

b b o = w, e L s

Vi o b o il B e o o w

2

Fig. 5. Conditions for stable propagation of phase-locked sta-
tionary waves. The numbers indicate the values of S, the nor-
malized input amplitude of the second-harmonic wave (8
= o09/0; = 1). Black and white areas correspond to unstable
and stable stationary modes, respectively.

The stability of these stationary states is a special is-
sue, and it is closely connected to the modulational insta-
bility analysis required for the soliton propagation. The
analysis of the stability conditions reveals that, although
any sets of input amplitudes can lead to formation of sta-
tionary waves in the MSC nonlinear medium, not all of
them correspond to stable stationary waves. Figure 5
summarizes the stability conditions in terms of the input
amplitudes of the three waves. A change of the sign of
the amplitude of wave S (or simultaneous change of the
signs of the amplitudes A and B) does not lead to a
change in the stability conditions [see Eqs. (A7)—(A9) be-
low]. It is also important to note that, when the seeding
of the second-harmonic wave is higher than 0.4, polariza-
tion components A and B, when they are in phase at the
input, will always propagate as stable stationary modes,
independently of the ratio of their amplitudes. Details of
the stability analysis are briefly outlined in Appendix A.
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5. CONCLUSIONS

We have shown that multistep cascading parametric-
wave interaction, which results in the simultaneous ac-
tion of two nearly phase-matched Type I and Type II SHG
processes, provides efficient enhancement of the nonlin-
ear phase shift collected by the input fundamental wave.
Correspondingly, the switching intensities are strongly
reduced. The advantage of this single-input two-color
MSC interaction, with respect to the third-harmonic MSC
considered in Ref. 8, is that it does not require that the
medium be transparent in the whole spectral window (w—
3w). This kind of double-phase-matched MSC interac-
tion can be used to lower the input power required for all-
optical switching. In addition, as was recently shown in
Refs. 15, 25 and 26, the MSC interactions can support
multicomponent solitary waves with a number of interest-
ing properties. In particular, in Ref. 26 it was shown
theoretically that nonlinear parametric interactions with
double phase matching can permit soliton bistability and
switching, similarly to the previously known case of non-
degenerate three-wave mixing.?”

APPENDIX A: STABILITY OF NONLINEAR
MODES

To analyze the stability of the stationary waves (or non-
linear modes) considered in Section 4, we introduce the
mode perturbations in the form

A, =Ag+ (a1 + iag)exp(Né), (A1)
Bn = Bst + (bl + ibz)eXP(?\f), (Az)
S, = Sg + (51 + isg)exp(r§), (A3)

assuming that a;,a9 <Ay, b1,by < By, and sq, Sy
< Sg. Substituting these expansions into Eq. (12) and
linearizing the resultant equations for a, as, b1, bs, s1,
and s,, we find that the vectors r = (ay,b1,s;) and m
= (aq, by, s9) satisfy the following linear system of equa-
tions:

Lm = \r, (A4.1)

Liyr= —\m, (A4.2)

where [ is a (3 X 3) unit matrix and ﬁ(_) and i(+) are
(3 X 3) matrices with the following elements:

ha * Sst iIBSSt Ast + BBst
i(t) = *BS hy BAg; . (A5)
2Ast + 2BBst 2IBAst hs

Not all equations of the system of Egs. (A4) are inde-
pendent. Indeed, considering Eq. (A4.1) separately, we
find that det|IA,(,)| = 0. By manipulating Eq. (A4.1) it is
easy to express ay and sy as functions of four other vari-
ables, a;, b;, s1, and b,, and also to verify that the real
part of the perturbations obeys the equality

Astal + Bstbl + Sstsl = 0. (A6)

A nontrivial solution of the new system of Eqgs. (A6) and
(A4.2) for a, by, s, and b4 exists, provided that the fol-
lowing condition holds:
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)\4 + Cz)\z + CO = 0, (A7)

where the coefficients are functions of A, By, S and
the ratio B only, i.e.,

AiBi( Ay Ai)
sz

482 + 48— + —
gt Bst Bgt

, 2(2Bst B Ai)
+ S5

pa, A% B
+ 2B8%(2B% + 2A% — S%) + 4A% + 8BA 4By,
(A8)
4 + SBﬁ + A—zt
Ay 8%
+ Agt182(6A§t + 4S§t - 3B§t) - ZIBAS‘cht
+ 8B%ABy(AZ + S2). (A9)

BZ

The magnitudes of these coefficients do not depend on
the sign of Si;. The same is true for the operation of si-
multaneous changes of the signs of amplitudes Ay and
Bg.

If all four roots of Eq. (A7) are imaginary, the station-
ary waves are stable. The stability results based on the
analysis outlined above are summarized in Fig. 5 and are
described in the main text.
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