
1204 OPTICS LETTERS / Vol. 25, No. 16 / August 15, 2000
Phase matching in nonlinear x (2) photonic crystals
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We analyze harmonic generation in a two-dimensional (2D) x �2� photonic crystal and demonstrate the possi-
bility of multiple phase matching and multicolor parametric frequency conversion. We suggest a new type
of photonic structure to achieve simultaneous generation of several harmonics; we also present both general
analytical results and design parameters for 2D periodically poled LiNbO3 structures. © 2000 Optical Society
of America
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Photonic crystals are usually viewed as optical analogs
of semiconductors that modify the properties of light
similarly to a microscopic atomic lattice that creates
a semiconductor bandgap for electrons.1 It is there-
fore believed that by replacing relatively slow elec-
trons with photons as the carriers of information one
can dramatically increase the speed and the bandwidth
of advanced communication systems. Recent fabrica-
tion of photonic crystals with a stop band at optical
wavelengths from 1.35 to 1.95 mm (Ref. 2) makes this
promise realistic.3

Nonlinear photonic crystals with quadratic [or x�2�]
periodic nonlinear susceptibility can be effectively
employed for parametric frequency conversion and
second-harmonic generation (SHG), as was first
suggested theoretically4 and recently verified experi-
mentally for a two-dimensional (2D) LiNbO3 photonic
structure.5 The authors of Ref. 5 also observed
third- and fourth-harmonic generation in a single x �2�

structure, which are usually associated with cascaded
second-order processes but are difficult to distinguish
experimentally.6 In this Letter we demonstrate
theoretically that 2D x �2� photonic crystals permit
simultaneous phase matching of several parametric
processes and thus provide an ideal environment
for the experimental realization of different types
of multistep cascading effect theoretically predicted
earlier.7 We also present the design parameters for
observing multiple harmonic generation in 2D periodi-
cally poled LiNbO3 structures of lower symmetry.

First, we consider a 2D x �2� photonic crystal with
a symmetric triangular lattice4,5 for which the linear
susceptibility is constant in the whole material but
the sign of the second-order susceptibility x �2� varies
periodically, as shown in Fig. 1. The triangular lat-
tice is characterized by only one parameter, the lattice
spacing d. We call this type of 2D grating a sym-
metric nonlinear photonic crystal (SNPC). As can
easily be seen from Fig. 1, this 2D structure creates an
infinite number of rows (directions of grating) along
which the sign of the second-order nonlinearity varies
periodically with different periods. Such gratings
can be used as one-dimensional periodic structures
0146-9592/00/161204-03$15.00/0
for quasi-phase matching (QPM) of the nonlinear-
ity-induced harmonic generation, as usually achieved
in one-dimensional structures based on periodi-
cally poled LiNbO3 or LiTaO3.8

Each of the effective gratings in a SNPC (with the in-
dices j � a, b, c, . . .) is characterized by period Lj and
the direction of the equivalent wave vector Kj . For ex-
ample, for grating a in Fig. 1, we have La � �

p
3�2�d

and Ka � �4p�d
p
3 �. To find possible phase-matching

processes for a 2D crystal, we should use the reciprocal
lattice9 formed by the fundamental vectors of two grat-
ings, Ka and Kc, for which jKaj � jKcj [see Fig. 2(a)].
All other grating vectors can be found as Kpq � pKc 1
qKa, where p and q are integer (positive or negative)
numbers. For the geometry shown in Fig. 1, we find
that Ka � �0, Ka�, Kc � �K0

p
3�2, K0�2�, and jKqpj �

K0�p2 1 q2 1 pq�1�2, where K0 � 4p�d
p
3.

For the (generally noncollinear) SHG process shown
in Fig. 2(b), we should satisfy the phase-matching con-
dition k2 � 2k1 1 Kpq, or

k2
2 � 4k1

2 1 Kpq
2 1 4k1Kpq cos�apq 2 b1� , (1)

where sin apq � �p
p
3�2� �p2 1 q2 1 pq�21�2,

k1 � 2pn1�l1, and k2 � 4pn2�l2; n1 and n2 are
the refractive indices.

Fig. 1. Schematic diagram of a 2D x �2� photonic crystal
with different types of grating structures. The shaded
circles mark the regions with the reverse sign of second-
order susceptibility.
© 2000 Optical Society of America
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Fig. 2. (a) Reciprocal lattice of the 2D crystal shown in
Fig. 1; (b) SHG phase-matching wave-vector triangle.

Angle g1 between the fundamental frequency and
second-harmonic waves [see Fig. 2(b)] is defined
as sin g1 � �Kqp�k2�sin�apq 2 b1�. The result of
Refs. 4 and 5 can be obtained from the relation
Kpq

2 � �2k1 2 k2�2 1 8k1k2 sin2�g1�2�, which re-
produces Eq. (6) of Ref. 4. For collinear SHG, we
have apq � b1, and Eq. (1) leads to a simple result:
d � 4pl�p2 1 q2 1 pq�1�2��Dk23�, where Dk2 �
k2 2 2k1.

To demonstrate the possibility of double phase
matching (DPM) of two parametric processes in a
2D x �2� photonic crystal we consider an example of
third-harmonic generation (THG) by simultaneous
phase matching of the processes of SHG and sum-
frequency mixing (SFM), v 1 2v � 3v. DPM of
these two processes in the SNPC of Fig. 1 is possible
only when all three interacting waves are noncollinear
[see Fig. 3(a)]. The first process, SHG, can be phase
matched by a certain grating vector, Kpq, and the sec-
ond process, SFM, can be phase matched by another
grating vector, Kmn. Indeed, if condition (1) for SHG
is fulfilled, the phase-matching condition for the SFM
process is

Kmn
2 1 2k12Kmn cos�amn 2 b12� � k3

2 2 k12
2, (2)

with k12
2 � �k1

2 1 k2
2 1 2k1k2 cos g1� and

b12 � b1 1 sin21��k2�k12�sin g1�. Solving Eqs. (1) and
(2) for fixed p, q, m, n, and l1, we f ind a unique set
of parameters �b1, d� that satisfy simultaneously the
phase-matching conditions for both SHG and SFM.

Similarly, we find the DPM condition for SHG and
fourth-harmonic generation (FHG), 2v 1 2v � 4v.
The FHG process can be phase matched by grating
vector Kij [the corresponding notation is shown in
Fig. 3(b)]. Then the condition for simultaneous SHG
and FHG phase matching can be found by solution
of a system formed by Eq. (1) and the equation
Kij

2 1 4k2Kij cos�aij 2 b1 2 g1� � k4
2 2 4k2

2.
DPM in a single SNPC is possible when all three in-

teracting waves are noncollinear, as that condition will
reduce the corresponding harmonic eff iciency. How-
ever, as will be shown below, partially collinear DPM
processes are possible in an asymmetric nonlinear pho-
tonic crystal (ANPC), as shown in Fig. 4, which per-
mits simultaneous phase matching of three different
nonlinear processes.
As is shown in Fig. 4, the unit cell of the ANPC
is defined by three parameters: d, e, and the angle
d. The magnitude and direction of the grating vec-
tors in the ANPC are defined, respectively, as Kpq �
j2pQpq��ed sin d�j and sin apq � �p�Qpq� sin d, where
Qpq � �p2 1 e2q2 1 2epq cos d�1�2. It is important to
notice that the magnitude and direction of the grating
vectors in an ANPC may take any value (in contrast
with the case of SNPC, where the magnitude and di-
rection of Kpq can take only discrete values).

The condition for collinear SHG in an ANPC (when
b1 � apq and g1 � 0) is defined by the constraint that
Dk2 2 Kpq � 0, which yields

d �
2pQpq

Dk2e sin d
. (3)

As above, the process of SFM, i.e., v 1 2v � 3v,
can be phase matched by grating vector Kmn. Then,
by noting that Kmn � �Qmn�Qpq�Dk2, we again find the
phase-matching condition for the THG process:

k3
2 2 k12

2

�Dk2�2
2

µ
Qmn

Qpq

∂2

�
2k12

Dk2

Qmn

Qpq
cos umnpq, (4)

where umnpq � �amn 2 apq�. For an arbitrary set of
parameters �p,q, m, n�, Eq. (4) defines a relation be-
tween e and d that allows the DPM to be satisfied for
the combined SHG–SFM process.

DPM for two processes, SHG and FHG, under the
condition that both the fundamental frequency and the

Fig. 3. DPM for (a) THG, noncollinear SHG, and non-
collinear SFM and (b) FHG, noncollinear SHG, and non-
collinear 2v 1 2v � 4v processes.

Fig. 4. Schematric diagram of an asymmetric 2D x �2� pho-
tonic crystal. For d � 60± and e � 1, it is transformed into
the structure shown in Fig. 1.
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Fig. 5. Examples of design parameters e and d for the
double- and triple-phase-matching conditions in a 2D
LiNbO3 APNC structure.

second-harmonic waves are collinear, will be achieved
when both e and d satisfy the following equation:

k4
2 2 4k2

2

�Dk2�2
2

µ
Qij

Qpq

∂2

�
4k2

Dk2

Qij

Qpq
cos uijpq. (5)

Thus an APNC permits DPM when two of the inter-
acting waves are collinear.

The second advantage of using an APNC is the
unique possibility of phase matching three parametric
processes simultaneously. To illustrate this, we con-
sider simultaneous generation of the second, third, and
fourth harmonics in a single ANPC crystal. Indeed,
solving the system of Eqs. (4), (5), and (3) for given
p, q, m, n, i, and j gives three design parameters
d, e, and d for an ANPC that support triple phase
matching.

For the case when one of the indices in each pair
�p, q�, �i, j�, and �m, n� is zero, we can obtain explicit
analytical formulas. As an example, we take �p, q� �
�p, 0�, �m, n� � �0, n�, and �i, j � � �0, j�. Then, using
the results obtained above, we find that akl � 0 at
k � 0 and akl � d when l � 0, and the DPM conditions
for THG and FHG become

cos d3v �
p2�k3

2 2 k12
2� 2 e2n2�Dk2�2

2k12Dk2enp
, (6)

cos d4v �
p2�k4

2 2 4k2
2� 2 e2j2�Dk2�2

4k2Dk2ejp
. (7)
The condition for simultaneous SHG, THG, and FHG
follows from cos d3v � cos d4v:

e2 � p2 2j�k3
2 2 k12

2�k2 2 n�k4
2 2 4k2

2�k12

nj �2jk2 2 nk12� �Dk2�2
.

The design parameters of a 2D x �2� ANPC to sat-
isfy double- and triple-phase-matching conditions are
shown in Fig. 5 for a LiNbO3 structure. We assume
that all interacting waves are polarized along the z
axis, so the refractive index depends only on the wave-
length. The angle d3v for DPM of the SHG and THG
and the angle d4v for DPM of the SHG and FHG pro-
cesses are fixed at 45±. The corresponding angle d

for simultaneous SHG, THG, and FHG depends on the
fundamental wavelength and is calculated from Eq. (6)
or (7).

In conclusion, we have suggested the possibility
of multiple phase matching and multicolor harmonic
generation in a new type of two-dimensional x �2� pho-
tonic crystal. Our results suggest that 2D photonic
crystals with a periodic x �2� nonlinear response are
ideal candidates for experimental observation of simul-
taneous generation of several harmonics and different
effects associated with the multistep parametric
cascading processes.

S. Saltiel’s e-mail address is saltiel@phys.
uni-sofia.bg.
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