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Abstract. It is shown that the induced phase shift gained by any of the funda-
mental waves in such processes as type II second harmonic generation and sum
frequency mixing depends on the intensity of both input waves. This provides a
means of control of the phase shifts that is essential for construction of ultra fast
all-optical switching gates. The induced phase shift is a result of simultaneous
action of coupled second order processes and is described by effective cubic non
linearity.

1. Introduction

The influence of second order processes on the efficiency of the third order interactions
in noncentrosymmetric media was noticed long ago [1, 2]. In [3] it was shown that the
effective cubic susceptibility responsible for phase matched third harmonic generation
in noncentrosymmetric crystals is a sum of two terms: intrinsing x(®)™ and so called
“cascade” third order susceptibility xé?f) ¢ Four and five order processes are also
affected by the low order processes [4-6].

The investigation of the role of second order processes on third order nonlinear
optical processes have recently received considerable attention [7-12]. It was shown
that the effective 72 can be 2 x 10714 cm?/W for 1 mm KTP crystal [7] and as much
as 2 x 107 cm?/W for organic crystals [11]. The large phase shifts caused by this
effective 7y can prove useful for low power ultra fast all-optical switching [12], Kerr
mode-locking [13], pulse compressing [14], formation of solitonlike waves [15] and
others. : '

Up to now only the effect of self-phase modulation via “cascaded” second order pro-
cesses near phase matching direction for the type I collinear second harmonic generation
was considered [7, 9-11, 16]. Some aspects of the cross phase modulation experienced
by the fundamental waves for the case of sum frequency modulation are presented in
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[17].

Here we provide analytical and numerical analysis of the process of opto-optical
phase modulation experienced by the fundamental waves in such second order nonlinear
processes as type I second harmonic generation and sum frequency mixing.

2. Theoretical Analysis

We start our investigation of the process of sum frequency mixing w, = wy + w, (Fig. 1)
in nonlinear crystal (NLC) with length L. We assume that the three interacting fields
are linearly polarized plane waves. The total electric field can be written as

Bz 4) = % S e4(2) explifwyt — kjz)] + c.c. )

where j = a,b,c; Aj(%) are the complex amplitudes. They incorporate both the real
. . . 2w
amplitude and the phase of the j wave: A;(2) = a;j(2) explip;(2)]; kj = "
. . J
wj are the corresponding propagating constants and frequencies. e,, €y, €. are the
polarization unit vectors of the three waves. In our investigations only second order
nonlinear processes are taken into account. The amplitude equations in the slowly-
varying envelope approximation, with assumption of zero absorption for all interacting
waves, have the following form:

n; and

d4q = —i04AcA} exp(—iAkz) @
f:’ — —iopAcAr exp(—iAkz) ®)
= —iocAgApexp(iAkz) N C))

where the subscripts “a” and “b” denote the fundamental waves and the subscript “c”

denotes the generated wave. The wave vector mismatch is Ak = ke~ kp — kq. Nonlinear

coupling coefficients oq, oy, 0 include the contraction of second order susceptibility
(2)

tenzor d® = X2 with the polarization umt vectors:

2 2

Oa= 5der = a( 0. d? eper) (5)
27 27 k
= 22 . (2) . ‘
op /\bnbddf )\bnb(eb A egee) ' ©)
2m 2 :
¢ )\c’n‘cd?ff = Ac’nc(ec.d(z) : eqeb) | . (7)

The same equations describe the process of type II second harmonic generation. For
this case A is the second harmonic field complex amplitude, A, and Ap — the complex
amplitudes of the two ortogonally polarized input waves.
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The system (2-4) can be rewritten in this way:

d* A, dA

2 AR 4 g da(od Al — o) Adf?) = 0 ®
d?A d

S+ inkSEY 4 Ao Al — ool Ad?) = 0 ©)
do.Ac o

7 d — b 4q|?) = 0. (10)

For exact solution of the output phases of the fundamental beams the system (8-10)
was solved by us numerically, but in order to analyse the physical meaning of the pro-
cess of cross phase modulation of the two fundamental beams let us first consider the
approximation of the fixed intensity for the fundamental beams [16]. In this approx-
imation the real amplitudes «, and ap of the fundamental waves are considered not
depending on z, but the phases ¢, and ¢y are functions of z. Denoting the constant
oc(opal + oqai) = S, which depends on input intensities and the nonlinear optical
properties of the NLC. Solving (10) with a.(0) = 0, we get for the amplitude and the
phase of the generated wave

ac(2) = 0c6q(0)ap(0)zsine (%Kz) an
Pel2) = 9al0) +@u0) ~ T+ EE (12

where K =V AE? + 485 .

For the phases of the interacting waves the following equations can be obtained from
(2-4):

d aca
—% = 002 cos (e — @a — @b — Akz) - (13)
A Qg
d act
?;’;9 =~y 203 (o~ Pa — g1 — Ak2) (14)
d aqap
T - o 2= cos (pe — g — pp— Bk2) (15)
From the last equation we obtain that
Ak
cos (e = a = o — Akz) = o a“z - (16)
ca)

Substltutm«T in (13-14) the expression (11) and (16) and after integration we get for
the phase shifts at the end of the NLC Ay, = ¢;(L) — ¢;(0)(j = a, b):

5 AEKL .
Ay = 0c04a3L (KI)Z [1 —sinc(KL)] a7
AL
App = 0copag L —= [1 — sinc(K'L)] . (18)
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3. Discussion

As can be seen from (17) and (18) the induced phase shift Ap, depends linearly on
the intensity of the fundamental beam “b” and the induced phase shift App depends
linearly on the intensity of the fundamental beam “a”. Very important fact, confirmed
also by the numerical solution, is that Ag, and Ay do not depend on the input phases
©a(0) and @p(0), respectively. If we take both input waves to be identical (as it is for

type I second harmonic genelatmn) then the expressmns (17) and (18) take the form
obtained for the ﬁrst time in [16].

wave ¢

\ wave b

wave h NLC

waves ¢ and ¢

Fig. 1. Schematic representation of quasi phase-matched wave interaction in nonlinear
crystal without center of inversion for obtaining optically controlled large induced phase

[T

shift: wave “a” is the source wave; wave “b” — the signal wave; wave "¢° — the

generated wave. The output phase shift of the wave “b” is proportional to the intensity
of the wave “a”

It is clear from (17) and (18) that the phases of both fundamental waves experience
phase shift, but for our discussions we will consider wave “b” as a signal wave and
wave “a” as a source wave, that control the phase of the signal, as shown in Fig. 1. In
Fig. 2 are shown the analytical (expression (14)) and the exact numerical solution of the

system (8-10) for the phase shift Agy as a function of normalized phase mismatch AkL
" for four different values of the “normalized total input intensity” SL?2. Input intensities
of both input waves are taken to be equal. From this graphs we see that the phase
change of the signal wave is described by dispersion-like curve centred around exact
phase-matched position AkL = 0. Even for the high intensity input beams, where the
depletion of the fundamental beams is quite substantial, the analytical graphs are very
close to the graphs obtained by the more precise numerical solution of the system (8-
10). If the “normalized total input intensity” SL? does not exceed 2, maximum phase
shift is obtained for normalized mismatches in the range AkL = (0.5 — 1)7. The exact
- optimum value (AkL)qp, obtained by numerical solution, depends on the parameter S
and on the ratio of the input intensities (Fig. 3). Analytical formulae (17-18) give for

2V/'S
the (AkL)op a value of 7 in the validity range of the approximation ——- N < 1 (see
dashed line in Fig. 3).
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Fig. 2. Output phase shift of the wave “b” as a function of the
phase mismatch AKL for input intensities that satisfy oplq = 0alp.
Dashed line is the analytical solution obtained from fixed intensity
approximation (expression (18)). Solid line is the numerical solution
of system (8-10). The parameter is the value of the “normalized total
input intensity” SL* = gcL? [0p04,(0) + 0ba3(0)]

2/ o o
In the same range of small input intensities Z\X/k < 1 maximum phase shift is
described by:

opoel
App** = _____ch aiL.

(19)

From the other side for the phase shift A, obtained in the process of cross phase
modulation (wp = wy + Wy — wWe) due to x> M only the following expression is valid:
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- T 3 ;
App = o3 (e,bx(?’)’ int ebeaeb) a’l. 20)
. - (3), casc 8 2 L .'
Comparing (19) and (20) we derive that X,y = o (detr) - The longer is the
C C

nonlinear media the bigger is the effective cubic nonlinearity.

We would like to point out that the used terminolbgy “cascade” is somehow mis-
leading. The word “cascade” should be used if the second order processes occur one
after another as it is in the case of third harmonic generation in two crystals in a row.
Here the second order processes take place simultaneously and cannot be separated.

(AkL)opt

0.1

0 0.5 1 1.5 2
normalized total input intensity, SL

1.6 I ] |

Tig. 3. Optimum values for the phase mismatch AkL versus the
“normalized total input intensity” SL% = gcL> [Jbaﬁ(O) + oaa?,(())]
0aa(0)
oba(0)
from fixed intensity approximation (expression (18)). Solid line is the
numerical solution of system (8-10) '

for different values of the ratio . Dashed line is obtained

In Fig. 4 is shown the numerical solution for the dependences of the phase shift
Ay (a) and the depletion (b) of the signal as a function of the input intensity of the
wave a for constant AEL equal to 2.8. It is seen that Ay depends almost linearly on
the intensity of the wave “a”. The smaller is the ratio between the intensities of the
signal and the source waves the bigger is the phase shift gained by the signal wave.
Nevertheless one order of magnitude change of the input signal results only in 20 %
change of the phase shift for given input source intensity.

Phase modulation of the waves gained in nonlinear optical interactions is usually

described in terms of nonlinear index of refraction 7. In the case of sum frequency
mixing

np = Mo + AR 4 AnTC = ngy 4+ An™ 4+ 7P, . @n

The first nonlinear term is a result of direct cubic processes wp = wh + wp — W,
Wh = Wq + wh — Wg and wp = we + wp — w, described by the pure cubic nonlinearity
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x (31t The estimations showed that for values of AkL close to the optimum, this term
can be neglected in comparison to the cascade one.
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Fig. 4. Numerical results for the induced phase shift (a) and the deple-
tion (b) of the signal wave “b” as a function of the “normalized input
intensity” of the source wave “a” for different values of the “normalized
input intensity” 0,a3(0)L? of the signal wave “b”

This last (cascade) term is arising from the simultaneous action of coupled second
order processes in the nonlinear media w, = wg+wp and wp = we—w, and is responsible

for the predicted large cross phase modulation Ay = %AncascL.
Using (18) we find
pose 4 (detr)” Ak

Aenanpneeoc K2 [t = sinc(KL)] - @2)
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. A o 2V S o . . ‘
This expression for small values of § (_\/—‘ < 1) coincides with the expression for 7§ .

responsible for self phase modulation found in [7, 9] The maximal nonlinear 1ndex of

A(de)® L
TgNbTLcEYC )\c
As it 1s pointed out in [18] the new nonlinear noncentrosymmetric organic materials
can be designed to have des bigger than 50 pm/V. With such nonlinear materials-7§%5¢
is about 107! cm?/W for samples only 1 mm long. This value is two-three orders of
magnitude larger than the known value of 7ip for the optical materials with electronic
origin of the nonlinearity. Phase shift of 0.5 rad can be obtained with 1 ps long pulses
with energy density 80 nJ/mm?. In waveguide applications where the beam is confined
to an area of about 10-30 um? only few picojoules will be required for such phase
shifts.

Our analysis of the phase behavxour of the fundamental waves in the process of
sum frequency generation shows that as a result of simultaneous action of coupled
second order processes both fundamental waves gain additional large phase shift. The
phase shift of any of the fundamental waves can be controlled by the intensity of the
second fundamental wave. In comparison with the scheme using type I second harmonic
generation, where for high phase shift is required high intensity of the signal beam with
the proposed scheme the signal beam can obtain any phase shift independently on its
input intensity. We believe that the scheme described here can be used for efficient
ultrafast opto-optical phase modulation, amplitude modulation and deflection.

refraction is proportional to the length of the nonhnear media: 7§ =
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