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Abstract. It is shown that the induced phase shift gained by any of the funda-
mental waves in such proqesses as type 11 second harmonic generation and sum 
frequency mixing depends on the intensity of both input waves. This provides a 
moans of control of the pi]ase shifts that is essential for construction of ultra fast 

all-optical s\vitching gates. The induced phase shift is a result of simultaneous 

action of coupled second order processes and is described by ~ffective cubic non 

linearity. ' 

1. Introduction 

The influence of second order processes on the efficiency of the third order interactions 

in noncentrosymmetric media was noticed long ago [ I , 2]. In [3] it was shown that the 

effective cubic susceptibility responsible for phase matched third harmonic generation 
in noncentrosynlmetric crystals is a sum of two terms: intrinsing X(3),int and so called 
"cascade" third prder susceptibility .~~':f3f) 'casc. Four and frve order processes are also 

affected by the low order processes [4-6]. ' 

The investigation of the role of second order processes on third order nonlinear 
optical processes have recently received considerable attention [7-12] . It was shown 
that the effective n2 can be 2 x l0-14 cm2/W for I nun KTP cl~rstal [7] and as much 
as 2 x 10-11 cm2/W for organic crystals [1l]. The large phase shifts caused by this 

effective ~~_9 can prove useftrl for low power ultra fast all-optical switching [ 12], Kerr 

mode-10cking [ 1 3], pulse compressing [ 14], fornlation of solitonlike waves [ 1 5] and 
others . 

Up to now only the effect of self-phase modulation via "cascaded" second order pro-

cesses near phase matching direction for the type I collinear second hannopic generation 

was considered [7, 9-11, 1 6]. Some aspects of the cross phase modulation experienced 
by the fundamental waves for the case of sum frequency modulation are presented in 
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[17]. 

Here we provide analyiical and numerical analysis of the process of opto-optical 
phase modulation experienced by the fundamental waves in such second order nonlinear 
processes as type 11 second hannonic generation and sum frequency mixing. 

2. TlleOretical AnalysiS 

We start our investigation of the process of sum frequency mixing (/)c = (4;b + cva (Fig. 1) 

in nonlinear crystal (NLC) with length L. We assume that the three interacting fields 
are linearly polarized plane waves. The total electric field can be written as 

l , = ~; ejAj(z) exp[~(~)3t k3z)] + c c 

where j = a, b, c; Aj(z) are the complex amplitudes. They incorporate both the real 
27r 

amplitude and the phase of the j wave: Aj(z) = aj(z) exp[ifPj(z)]; kj = nj and 
~-3 

(4)j are the corresponding propagating constants and frequencies. ea' eb, ec are the 
polarization unit vectors of the three waves. In our investigations only second order 

nonlinear processes are taken into account. The amplitude equations in the slowly-
varying envelope approximation, with assumption of zero absorption for all interacting 

waves, have the following fonu: 

d A a 

dz = ~iaaAcA~ exp(-iAkz) (2) 
d A b 

dz = ~iabAcA~exp(-iAkz) (3) 
d AC 

dz ~ -i(TcAaAbexp(iAkz) (4) 
" " and "b" d.enote the fundamental waves and the subscript c '' ,' where the. subscripts a 

denotes the generated wave. The wave vector mismatch is A k = kc ~ kb - k,a' Nonlinear 
coupling coeffrc.ients cra, crb, crc include the contraction of second order susceptibility 
tenzor d(2) =- X(2) with the polarization unit vectors: 

2 

27T 27r (Ta - Aana = (ea'd(2) : ebec) (5) d e f f 

Aana 

27r 27T gb = = (eb.d(2) : eaec) (6) Abnb d,ff 
Abnb 

27r 27r (y = (ec'd(Q-) : eaeb) '. (7) c - ~cncdeff 
Acnc 

The same equations describe the process of type 11 second harmonic generation. For 

this case Ac is the second hanuonic field complex amplitude, Aa and Ab - the complex 
amp].itudes of the two ortogonally polarized input waves. 
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The system (2-4) can be rewritten in this way: 

d2Aa + iAhdd~A.~.a + aa.Aa((7clAbl2 - crblAcl2) = O 

d A b 
, + iAk d_' +(7bAb(aclAal-9 - (TalAcl2) = O 

d z 2 

d 2 A d A c + iAk c + ac/1c((TalAbl2 - (7blAal2) = O , (10) 
dz2 dz 

For exact solution of the output ph~ses of the fundamental beams the system (8-10) 
was solved by us numerically, but in order to analyse the physical meaning of the pro-

cess of cross phase modulation of the two ftmdamental beams let us first consider the 
approxim.ation of the flxed intensity f:or the fundamental beams [ 16]. In this approx-

imation the real amplitudes a,a and ab of the fundarnental waves are considered not 
depending on z, but the phases ipa and ipb are functions of z. Denoting the constant 
crc(aba~ + (7aa~) = S, which depends on input intensities and the nonlinear optical 

properties of the NLC. Solving (10) with ac(O) = O, we get for the amplitude and the 

phase of the generated wave 

(- .) (11) ac(z) = (rcaa(O)ab(O)zsinc ;Kz 

~)c(z) = ~)a(O) + fPb(O) 7r Akz (12) 
2+ 2 

where I\- = VAk2 + 4S . 
For the phases of the interacting waves the following equations can be obtained from 

(2 ~4): 

d{pa _ acab , (13) dz ~ cos (fPc ~ ~)a; ~ ~'b - Akz) ~ (7a 
aa 

dfPb acaa dz = (Tb cos (fPc ~ fPa ~ ~)b - ~Lkz) (14) 
ab 

d~)c _ _ aaa,b 
(7c cos (~)c ~ fP(e ~ ~)b - Akz) . (15) 

dz ac 
Frorn the last equation we obtain that 

cos (~)c ~ ~)a ~ fPb - Ahz) = Akac (16) 
2(Tcaaab 

Substituting in (1 3 -14) the expression (1 1) and (16) and after integration we get for 

the phase shifts at the end of the NLC A~)j = {pj(L) - fPj(O)(j = a, b): 

A~)a = (Tc(7aa~LQ 

9T9~ A~)b = ac(7ba~l. 

AkL 
(KI.)2 

A kL 
(KI.)2 

[1 - sinc(KL)] 

[1 - sinc(KL)] 

( 1 7) 

(18) 
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3. DisclISSIOll 

As can be seen from (17) and (18) the induced phase shift A~a depends linearly on 
t.he intensity of the fundamental beam "b" and the induced phase shift A~'b depends 

'' ', linearly on the intensity of the fundamental beam a . Very important fact, confn:med 
also by the n'Lunerical solution, is that A~)a and Alpb do not depend on the input phases 
~)a(O) and ~,b(O), respectively. If we take both inpuf waves to be identical (as it is for 

type I second hanuonic gener,ation), th,en the expressions (17) and (18) take the form 
obta,in, ed for the first timp in [ 1 6]. 

wave a 

wa\re b NLC 

wave b 

waves a and c 

Fig. I . Schematic representation of quasi phase-matched vvave interaction in nonlinear 
cl~fstal \~rjthout center of inversion for obtaining optically controlled large induced phase 

'' ,, shift: wave "a" is the source wave; wave "b" - - the the signal wave; wave c 
generat.ed wave. The output, phase shift of the wave "b" is proportional to the intensity 

'' ,, of the wave a, 

It is clear from (17) and (18) that the phases of both fundamental waves experience 
phase shift, but for our discussions we will consider wa\'e "b" as a srgnal wave and 

wave a as a source wave, that control the phase of the signal, as shown in Fig. I . In '' ,, 

Fig. 2 are shown the analyiical (expression (14)) and the exact numerical solution of the 

system (8-10) for the phase shift AfPb as a function of nornlalized phase mismatch AkL 
for four different values of the "nonnalized total input intensity" SL2. Input intensities 

of both input waves are taken to be equal. From this graphs we see that the phase 
change of the signal wave is described by dispersion-1ike curve centred around exact 
phase-matched position AkL = O. Even for the high intensity input beams, where the 
depletion of the fundamental beams is quite substantial, the analyiical graphs are very 

close to the graphs obtained by the more precise numerical solution of the system (8-
1 O). If the "nornlalized. total input intensity" SL2 does not exceed 2, ma~imum phase 

shift is obtained for normalized mismatches in the range ~kL = (0.5 - 1)7T. The exact 

optilnum value (AkL)opt, obtained by numerical solution, depends on the parameter S 
and on the ratio of the input intensities (Fig. 3). Analytical fonuulae (17-18) give for 

2 V~ 
the (AhL)opt a value of 7r in the validity range of the approximation Ak << I (see 

dashed line in Fig. 3). 
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Fi<*•. 2. Output phase shift of the wa\'e "b" as a funbtion of the 
phase mismatch AkL for input intensities that satisfy abla = cralb. 

Dashed line is the analytical solution obtained from fixed intensity 

approximation (expression ( 1 8)). Solid line is the numerical solution 
of system (8-10). The parameter is the value of the "normalized total 
inpu,t intensity" SL2 = a:cL2 (Tba,~(O) + (7ba,~(O) 

2V,~~ * 
In the same range of slnall input intensities Ak << I maxnnum phase 

described by: 

shift is 

max AfPb ::= 
(TbcrcL a2aL 

7r 

( 1 9) 

From the other side for the phase shift A~)b obtained in the process of cross phase 
modulation (~)b = c~)a + a)b - (l)a) due to X(3), int only the following expression is valid: 
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' 7T3 . ~ = (e bX(3) mt A{pb Abnb ~ ' ' : ebeaeb) a~L . (20) 

(3), casc ( d eff ) 2 . Comparing (19) and (20) we derive that Xerr = A~c The longer rs the 
3nc 

nonlinear media the bigger is the effective cubic nonlinearity. 

We would like to point out that the used tenuinology "cascade" is somehow mis-
leading. The word "cascade" should be used if the second order processes occur one 
after another as it is in the case of third hanuonic generation in two crystals in a row. 

Here the second order processes take place simultaneously and cannot be separated. 

3 .2 

3 

+'~~. 2.6 

~ h~],*c' 2.4 0.7 
2 

1 .6 o o.5 2 1 1 .5 

llormalized total input intensity, SL 

l'-ig. 3. Optimum values for the phase mismatch AkL versus the 
"normalized total input intensity" SI. = [ l 2 (TcL2 cTba~(O) + (Taa~(O) 

aaa,~(O) 
. Dashed line is obtained for different values of the ratio 

, crba,~(O) 
from fixed intensity approximation (expression (18)). Solid line is the 

numerical solution of system (8-10) 

In Fig. 4 is shown the numerical solution for the dependences of the phase shift 
AfPb (a) and the depletion (b) of the signal as a function of the input intensity of the 

wave a for constant AkL equal to 2.8. It is seen that A~)b depends almost linearly on 
'' ,, the intensity of the wave a . The smaller rs the ratio between the mtensrtles of the 

signal and the source waves the bigger is the phase shift gained by the signal vvave. 
Nevertheless one order of magnitude change of the input signal results only in 20 % 
change of the phase shift for given input source intensity. 

Phase modulation of the \vaves gained in nonlinear optical interactions is usually 
described in tenus of nonlinear index of refraction ~2 . In the case of sum frequency 

mixing 

n,b = nbO + Anlnt + Ancasc _ nbO + Anint + f~c2ascl_~ (2 1 ) 

The first nonlinear term is a result of direct cubic processes a)b = a)b, + a)b - ~)b, 

(~)b = u)a +, ~)b - (L'a and (~,b = c,)c + ce)b - cL;c described by the pure cubic nonlinearity 
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X(3), int. The estimations showed that for values of AkL close to the optimum, this tenn 

can be neglected in comparison to the cascade one. 
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Fig. 4. Numerical results for the induced phase shift (a) and the dep]e-
tion (b) of the signal wave "b" as a function of the "normalized input 
intensity" of the source wave a for different values of the "normalized '' ,, 

''~;" Input Intensrty" aaab(O)L of the slgnal wave u 

This last (cascade) tenn is arising from the simultaneous action of coupled second 
order processes in the nonlinear media evc = cL;a+~)b and cvb = a)c~a)a and is responsible 

27r 
for the predicted large cross phase modulation A~)b = AncascL. 

Ab 
Using (18) we find 

7-~casc 47r (deff)2 Ak [1 - smc(KL)] (22) 
= Acnanbnccoc ll~-) 
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This expression for slnall values of S (2\/~T << 1) coincides with the expression for f~c2asc 

Ah responsible for self phase modulation found in [7, 9]. The maximal nonlinear index of 
4 (defr)2 L 

refraction is proportional to the length of the nonlinear media: ncasc _ _ 2 nanbnccoc Ac 
As it is pointed out in [ 1 8] the n.ew ~lonlinear noncentrosylmnetric organic materials 

can be designed to have deff bigger than 50 pm/V. With such nonlinear materials '~~~asc 
is about 10-11 cm~9 /W for samples only I mm long. This value is two-three orders of 

magnitude larger than the known value of ~~2 for the optical materials with electronic 

origin of the nonlinearity. Phase shift of 0.5 rad can be obtained with I ps long pulses 
with energy density 80 nJ/nun2 . In waveguide applications where the beam is confined 
to an area of about 10-30 /hm2 onl,y few picojoules will be required for SLIC11 phase 
shifts . 

Our analysis of th.e phase behaviour of the fundamental wave~ in the probess of 
Suln frequency generation shows that as a result of simultaneous action of coupled 
second order processes both fLmdamental wave,s gain additional large phase shift. The 

phase shift of any of the fundamental waves can be controlled by the intensity of the 
se,cond fundamental wave. In comparison with the scheme using type I second harmonic 
generation, where for high phase shift is required high intensity of the signal beam with 

the proposed scheme the signal beam can obtain any phase shift independently on its 
in.put intensity. We believe that the scheme described here can be used for eff;cient 
ultrafast opto-optical phase modulation, amplitude modulation and deflection. 
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