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High-order nonlinear phase shift caused
by cascaded third-order processes
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We show, for the first time to our knowledge, that the fundamental beam that participates in the process
of third-harmonic generation experiences an additional high-order nonlinear phase shift. The magnitude of
the shift is proportional to the square of the pump intensity and the length of the sample and depends
on the deviation from the exact phase-matched condition. This phase shift arises from cascaded third-
order processes. Its value can exceed the value of the phase shift that originates from inherent fifth-order
susceptibility of the nonlinear medium. Its sign is controllable by the sign of the phase mismatch of the
third-harmonic generation process.  1997 Optical Society of America

In general, the phase shift that a wave propagating
through a nonlinear medium suffers is described by the
intensity-dependent refractive index1:

n ­ n0 1 n2I 1 n4I 2 1 n6I3 1 . . . . (1)

The first, second, and third nonlinear terms on the
right-hand side of Eq. (1) are connected to the cubic-,
fifth-, and seventh-order nonlinear processes, respec-
tively:

n2 ­ 3x s3dys4e0cn0
2d, n4 ­ 5x s5dys4e0

2c2n0
3d,

n6 ­ 35x s7dys16e0
3c3n0

4d . (2)

Recently it was shown2 that the n2 coeff icient in
quadratic media is in fact a sum of two terms, one that
is due to the inherent x s3d susceptibility of the media
and the second to the cascading of the second-order
nonlinearity: n2 ­ n2

dir 1 n2
casc. The cascaded term

is comparable with or higher in value than n2
dir only

when the beam is involved in a nearly phase-matched
second-order nonlinear-optical process.

One should expect the cascading of third-order non-
linearities to inf luence the nonlinear phase modula-
tion of the fundamental beam in the same way as the
cascaded second-order processes do. Until now this
problem was investigated only with respect to the eff i-
ciency of the generated waves.3,4 To our knowledge an
analysis of self- and cross-phase modulation of the fun-
damental beam owing to cascading of third-order non-
linearities has not been made.

Here we present a study of the nonlinear self-
phase modulation of a fundamental beam involved in
a slightly mismatched process of third-harmonic gen-
eration (THG). We show that in this case n4 consists
of two terms: n4

dir proportional to the corresponding
component x s5d of the fifth-order nonlinear susceptibil-
ity tensor and a cascaded term n4

casc proportional to
s x s3dd2. By appropriate choice of the sample length,

wave-vector mismatch, and beam intensity the value
of n4

casc can always be made to exceed that of n4
dir .

We start our investigation of a process of THG sv3 ­
v1 1 v1 1 v1d in a nonlinear crystal of length L. It
is assumed that the fundamental and the generated
waves are linearly polarized and that the electric
field is

E ­ 1/2hê1A1 expf2isvt 2 k1zdg

1 ê3A3 expf2is3vt 2 k3zdg 1 c.c.j , (3)

where kj ­ 2pnj ylj and vj are the corresponding
propagation constants and frequencies (ê1 and ê2 are
the polarization unit vectors). Aj s j ­ 1, 3d are the
complex slowly varying wave amplitudes. They in-
corporate both the real amplitudes aj and the phases
wj of the waves: Aj szd ­ aj szdexpfiwj szdg. The two
waves are considered to be nearly phase matched,
which can be achieved by use of natural birefringence
or the quasi-phase-matched (QPM) technique.5 The
QPM technique was developed for second-order nonlin-
ear processes, but it has recently been extended, both
theoretically and experimentally, to the case of THG.6

Starting from Maxwell’s equations and after ac-
counting for all relevant cubic and fifth-order terms in
the nonlinear polarization, we drive the slowly varying
envelope equations that describe the THG in a trans-
parent nonlinear medium in the form

dA1

dz
­ isg1jA1j2 1 g2jA3j2 1 djA1j4d

3 A1 1 ig13A1
p2A3 expsiDkzd ,

dA3

dz
­ ig4jA1j2A3 1 ig31A1

3 exps2iDkzd , (4)

where the nonlinear coupling coeff icients are speci-
fied in Table 1. In the case of QPM technique the
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Table 1. Nonlinear Coupling Coeff icients

g1 ­
v

c
3

8n0svd
ê1 ? xs3d

...ê1ê1ê1,

g2 ­ 2
v

c
3

8n0svd
ê1 ? x s3d

...ê3ê3ê1,

d ­
v

c
5

16n0svd
ê1 ? x s5d

...ê1ê1ê1ê1ê1,

g13 ­
v

c
3

8n0svd
ê1 ? x s3d

...ê1ê1ê3

g31 ­
3v

c
3

8n0s3vd
ê3 ? x s3dLê1ê1ê1

g4 ­ 2
3v

c
3

8n0s3vd
ê3 ? x s3d

...ê1ê1ê3

wave-vector mismatch is Dk ­ k3 2 3k1 2 K, where
K ­ 2pyT and T is the periodicity of the grating.5,6

The system of Eqs. (4) was solved analytically by
use of the f ixed intensity approximation. This ap-
proximation, initially developed for the description of
type I second-harmonic generation7 and applied later
for type II second-harmonic generation,8,9 suggests no
depletion for the intensity of the fundamental waves
but a possible change of their phases. Here the f ixed
intensity approximation approach is extended to the
case of THG. Following this method we reduce the
system of Eqs. (4) to an ordinary differential equation
for the complex amplitude of the third harmonic wave:

d2A3

dz2 1 iD
dA3

dz
1 SA3 ­ 0 , (5)

in which (after assuming that jA3j2 ,, jA1j2 ­ con-
stant) the coefficients D and S are specified as D ­
Dk 2 sg4 1 3g1djA1j2 and S ­ fDkg4 1 3sg13g31 2

g1g4djA1j2gjA1j2. The integration of Eq. (5) gives

a3szd ­ g31a1
3 sincsLzdz,

w3szd ­ spy2d 1 3w10 2 sDy2dz , (6)

where L2 ­ D2y4 1 S and w10 is the initial phase of the
fundamental wave. As dw3ydz ­ 2sDy2d, and on the
basis of Eqs. (4), we obtain the following equation for
the phase of the fundamental beam:

dw1

dz
­ g1a1

2 1 da1
4 1 g2a3

2

1 sg13yg31dsa3ya1d2sDy2 1 g4a1
2d . (7)

As a result the nonlinear phase shift (NLPS) Dw1 ­
w1sLd 2 w10 of the fundamental wave at the output
sz ­ Ld of the sample is obtained in the form

Dw1 ­ sg1a1
2 1 da1

4dL 2 f g13g31sDy2d

2 g31sg2g31 2 g4g13da1
2g

a1
4L

2L2 f1 2 sincs2LLdg .

(8)

The first term in Eq. (8) represents the contribution
of the direct third- and fifth-order processes to the

NLPS. The second one, which we denote Dw1
casc,

accounts for the self-phase modulation of the beam
that is due to the cascaded third-order processes. The
physical explanation of the cascaded third-order NLPS
is based on the interference of the fundamental wave
and the wave generated as a result of the four-wave
mixing process: v ­ 3v 2 v 2 v.

Figure 1 illustrates the dependence of the cascaded
part Dw1

casc of the NLPS [Eq. (8)] of the fundamen-
tal beam as a function of the normalized phase mis-
match DkL for different values of the normalized
input intensity g13jA1j2L. Assuming that the medium
is transparent for both the fundamental and the gener-
ated wave frequencies, we accept here (see Table 1) the
following equalities10: g31 ø g13 and g4 ø 3g2. In our
calculations we took that g1 ­ g13 and g4 ­ 6g13. The
phase-shift curves are centered at DkL ­ 0 only for
low values of the input intensity. For higher values of
g13jA1j2L (unlike in the corresponding case of second-
harmonic generation) the curves are no longer centered
at the point DkL ­ 0, and the maximum and the mini-
mum absolute values differ. This fact is due to the cor-
rect accounting for all relevant nonlinear terms in our
model and can be quite important in experimental sit-
uations when a maximum NLPS is needed.

On the basis of Table 1 and using Eqs. (2) and (8),
we define the cascaded part of nonlinear refractive

Fig. 1. High-order NLPS (owing to cascading) as a func-
tion of the normalized phase mismatch DkL. The parame-
ter is the value of the normalized input intensity g13jA1j2L.

Fig. 2. Normalized effective coeff icient ñ4 as a function of
the normalized pump intensity g13jA1j2L. The parameter
is the normalized phase mismatch DkL (in radians) with
the following values: a, 2py2; b, 2p; c, 23py2; d, 22p.
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Table 2. Numerical Values of the Nonlinear Refractive-Index
Coefficients n2, n4, and ncase

4,max for Various Materials and Wavelengthsa

Material l snmd n2 scm2yWd n4 scm4yW2d ncase
4,max scm4yW2d Linear Loss, TPA Reference

RG 780 740 5.6 3 10213 28.4 3 10222 28.5 3 10221 Negligible 11
PTS 1064 5.0 3 10212 25.0 3 10221 24.7 3 10219 Significant 12
PTS 1600 2.2 3 10212 28.0 3 10222 26.0 3 10220 Negligible 13
AlGaAs 1550 1.5 3 10213 25.0 3 10223 22.9 3 10222 Negligible 14

ancase
4, max is calculated with Eq. (10) for L ­ 1 cm and DkL ­ p; TPA is two-photon absorption.

coeff icient n4 in the form

n4
casc ­

v

c
n2

2 D

4L2 f1 2 sincs2LLdg . (9)

The value of n4
casc increases with increase of the in-

put fundamental wave intensity. This fact is illus-
trated on Fig. 2, where the normalized f ifth-order
cascaded nonlinear refractive-index coefficient ñ4 ­
sn4

cascyn2
2dysly2pLd is plotted against the normalized

pump intensity g13jA1j2L for several values of the nor-
malized phase mismatch DkL. The variation range of
the normalized pump intensity is chosen in such a way
that the depletion of the fundamental beam does not ex-
ceed 10%. For higher values of the intensity the f ixed
pump intensity approximation is no longer valid, and
one should use a numerical solution of Eqs. (4). Nev-
ertheless, the approach that we present here seems to
be a good analytical tool, providing an instructive and
comprehensive physical understanding of the problem.

For g13jA1j2L ,, 1, Eq. (9) has extrema at 2LL ø
DL ø DkL ­ 6p that have the form

n4
cascs2LL ­ 6pd ­ 2sgnsDkd2n2

2Lyl . (10)

It is seen that by choosing the sign of the mismatch Dk
we can choose the sign of n4

casc and also that we can
effectively increase its value by increasing the length
of the nonlinear medium. To obtain some numbers
we took the available data for n2 and n4 for the mate-
rials11 – 14 listed in Table 2. For example, for poly-
diacetylene para-toluene sulfonate (PTS) at l ­
1600 nm,13 assuming that L ­ 1 cm, we get ncasc

4,max ­
66 3 10220 cm4yW2, which is almost a 2-order-higher
value than the reported direct one. This numerical ex-
ample shows a more realistic situation for experimental
observation of bistable solitary waves, for which the
ratio between the third- and the f ifth-order coefficients
is an essential parameter.15 – 17 The relatively high
values of this parameter provide a larger range of
bistability of the solitary waves. PTS (for which the
quintic nonlinearity contribution is significant) is also
believed to present a unique opportunity for studies of
stable two-dimensional solitary waves.13,18 As shown
in Ref. 13, the lower the ratio of n2yn4, the lower the
required power for stable beam propagation.

In conclusion, we have studied analytically the high-
order NLPS of the fundamental wave involved in
the process of type I THG in media with centers
of inversion. The nonlinear medium should permit
phase matching of the process by use of natural
birefrigence or the so-called QPM techniques. The

high-order NLPS that is due to the cascaded third-
order nonlinearities is controllable in sign by proper
choice of the sign of the phase mismatch between
the fundamental and the third-harmonic waves. A
similar analysis can be performed for studying direct
THG in quadratic media. In this case three- and four-
step cascaded processes will also contribute to the
magnitude of n4

casc.
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