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The evolution of the phase of a weak signal wave (v2) copropagating with a strong gate wave (v1) in a cen-
trosymmetric medium is studied analytically and numerically for the case when the two waves are involved in
a nearly phase-matched third-order process that generates a third wave (v3 5 2v1 1 v2). It is shown that
the signal wave collects, in addition to the phase shift that is due to the v2 5 v1 1 v2 2 v1 process, an extra
nonlinear phase shift caused by cascading of two third-order nonlinear processes, v3 5 2v1 1 v2 and v2
5 v3 2 2v1 . The attractive feature of this new type of cross-phase modulation is the fact that one can con-
trol its magnitude and sign by changing the wave-vector mismatch of the sum-frequency mixing process and
the gate intensity. © 1999 Optical Society of America [S0740-3224(99)01702-6]
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1. INTRODUCTION
Cross-phase modulation (XPM) induced by coupling
among optical waves gives rise to a number of important
nonlinear effects1 such as induced nonlinear birefringence
and the associated optical Kerr effect, polarization insta-
bility, and pulse shaping; spectral broadening and gen-
eration of a continuum, modulation instability, and a soli-
tary wave supported by coupling through XPM2,3; and
weak-beam deflection in an off-axis geometry.4 The two-
color Z-scan technique used for measurements of x (3) non-
degenerate components5–7 and laser pulse duration8 is
also based on the effects of XPM. The possibility of maxi-
mizing the effects of XPM to control its magnitude and
sign will be useful in the future developments of these ap-
plications.

Recently it was shown (Refs. 9–12 and references
therein) both theoretically and experimentally that in a
noncentrosymmetric medium tuned for nearly phase-
matched type II second-harmonic generation or sum-
frequency mixing it is possible to achieve the XPM effect
by use of cascaded second-order processes. The effect is
described by an artificial cubic nonlinearity xcasc

(3)

} @x (2)#2, which as a rule has a higher value than the in-
herent cubic nonlinearity of the medium. Importantly,
one can change the sign of xcasc

(3) simply by reversing the
sign of the wave-vector mismatch of the process. In cen-
trosymmetric media x (2) 5 0, and the second-order cas-
cade processes cannot be used to enhance or reverse the
sign of the XPM effect. However, one can expect that in
centrosymmetric media cascaded third-order
processes13,14 will behave similarly. As far as we know,
this problem has not been addressed.

Here we show theoretically that, under certain condi-
tions, cascaded third-order processing (CTOP) can yield a
XPM effect comparable in magnitude with the XPM that
is due to intrinsic x (3) of the medium. By changing the
sign of this cascaded XPM it is possible to achieve en-
hancement or reduction of the overall XPM effects.

2. PLANE-WAVE EQUATIONS
We consider two linearly polarized plane waves, E1 and
E2 , copropagating through a centrosymmetric lossless
medium. The two waves interact throughout the cubic
nonlinearity of the media, generating a third wave, E3 .
The total field in the medium is taken to be

E~z, t ! 5
1
2 ( ej Aj ~z !exp@i~v j t 2 kj z !# 1 c.c.,

where kj 5 2pnj /l j and v j are, respectively, the propa-
gation constants and frequencies. Aj are the complex
slowly varying wave amplitudes, which incorporate both
the real amplitudes aj and the phases w j of the waves:
Aj(z) 5 aj(z)exp@iwj (z)#.

The relevant slowly varying envelope equations for the
process 2v1 1 v2 5 v3 have the form

dA1

dz
5 iW1 A1 1 ig1 A3 A2* A1* exp~iDkz !,

dA2

dz
5 iW2 A2 1 ig2 A3 A1* A1* exp~iDkz !,

dA3

dz
5 iW3 A3 1 ig3 A1 A1 A2 exp~2iDkz !, (1)

where Wj 5 ( lg jlal
2 (j, l 5 1, 2, 3) and the wave-vector

mismatch is Dk 5 k3 2 2k1 2 k2 . In the case of paral-
lel polarization of the input waves the nonlinear coupling
coefficients g j and g jl obey the following relations: g j
5 (v j/2v1)g1 , j 5 2,3; g jl 5 (v j /v1)(2 2 d jl)g0 , j,l
5 1, 2, 3; and g0 5 (3p/4l1n1)x (3).

Equations (1) include only those four-wave interactions
that have relatively small wave-vector mismatches (Dk
, 50/L, where L is the length of the nonlinear medium).
Other four-wave interactions, including those that yield
the third harmonic of the input waves and these that are
responsible for optical rectification, are considered to be
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far from the phase-matching condition and inefficient (see
the discussion in Section 5 below).

When v2 , k1 , k2 , and k3 are replaced with v1 , k1
(o) ,

k1
(e) , and k3

(e) , respectively, in Eqs. (1), those equations
also describe type II third-harmonic generation, i.e., one
ordinary and one extraordinary wave generate an ex-
traordinary third-harmonic wave. The wave-vector mis-
match is then Dk 5 k3v

(e) 2 2k1v
(o) 2 k1v

(e) . However, in
this case the relationships between the nonlinear cou-
pling coefficients will be different.

In principle Eqs. (1) can be integrated exactly. The re-
sultant analytical expressions for the amplitude and the
phase of the interacting waves consist of Jacoby elliptical
functions and integrals; however, the use of these analyti-
cal solutions is rather difficult because evaluation of the
elliptical sine and the elliptical integral of the third kind
(used in the expressions for the nonlinear phase shift) re-
quires complicated numerical calculations.15 Thus to
solve Eqs. (1) we chose direct numerical integration and
derivation of an approximate analytical formula by using
a low-depletion approximation.14,16

In what follows, we shall consider the situation when
ua2u2 ! ua1u2, calling these two fundamental waves signal
and gate waves, respectively. The case of equal intensity
of the two fundamental waves is practically similar to a
case of third-harmonic generation that has already been
considered.13,14

3. ANALYTICAL APPROACH
The system of Eqs. (1), when it is rewritten with respect
to the real amplitudes and the phases, has the following
form:

aj
daj

dz
5 6g ja1

2a2a3 sin F, (2a)

aj
dw j

dz
5 Wj aj 1

g j a1
2a2a3

aj
cos F, (2b)

where j 5 1,2,3 and F 5 w3 2 2w1 2 w2 1 Dkz. The
minus in Eq. (2a) corresponds to j 5 1,2, and the plus cor-
responds to j 5 3.

With the suggestions that a3(0) 5 0, a1(0) 5 a10 , and
a2(0) 5 a20 , the three invariants of Eqs. (2) are

aj
2 1

g j

g3
a3

2 5 aj0
2 , j 5 1,2, (3)

g3a1
2a2a3 cos F 1 La3

2 1
Dg

4
a3

4 5 0. (4)

In Eq. (4) the following substitutions have been made:

L 5 ~Dk 1 G1a10
2 1 G2a20

2 !/2,

Dg 5 ~G3g3 2 G1g1 2 G2g2!/g3 ,

G j 5 22g1j 2 g2j 1 g3j ~ j 5 1, 2, 3 !.

Approximate expressions for the square of the ampli-
tude of the interacting waves can be derived14,16 for the
situation when the coefficient of the intensity conversion
into the third wave with respect to the gate wave does not
exceed 20%:

aj
2~z ! 5 aj0

2 2
g j

g3
a3

2~z ! ~ j 5 1, 2!, (5)

a3
2~z ! 5

g3
2

Q2 a10
4 a20

2 sin2~Qz !, (6)

where Q2 5 g3(2g1a10
2 a20

2 1 g2a10
4 ) 1 L2.

The phase of the weak wave can be obtained by inte-
gration of Eq. (2b) for j 5 2. Two different approaches
are possible: weak depletion of the signal intensity and
strong periodic depletion of the signal intensity.

In the first case the phase shift Dw2 of the signal wave
at the output of the crystal has the form

Dw2 ' g21a10
2 L 2

g3g2a10
4 L

2L
@1 2 sinc~2LL !#. (7)

This expression is useful for interpreting the physics of
the XPM that are due to CTOP. In the second case
(strong periodic depletion of the signal intensity), as a re-
sult of exact integration of Eq. (2b), j 5 2 we obtained a
more complicated but more accurate expression for Dw2 :

Dw2 5 S A 1 g3
2

Ba10
4 a20

2

2Q2 D L 2 g3
2

Ba10
4 a20

2 L

2Q2

sin~2QL !

2QL

2
4g2L 1 g3Dga20

2

4g2QD
arctan@D tan~QL !#, (8)

where

A 5 g21a10
2 1 S g22 1

g3Dg

4g2
Da20

2 1 L,

B 5 g23 2
g21g1

g3
2

g22g2

g3
1

Dg

4
,

D 5 S 1 2
g2g3a10

4

Q2 D 1/2

.

4. PHYSICAL INTERPRETATION
A physical explanation of the effect of XPM that is due to
CTOP can be obtained by consideration of relation (7).
The first term represents the phase shift of the signal
wave that is the contribution of the single third-order pro-
cess v2 5 v1 1 v2 2 v1 known as XPM. This process is
always phase matched and does not depend on Dk.

The second term accounts for the XPM that is a result
of cascading of two third-order processes:

(i) Generation of a third wave with frequency v3
5 2v1 1 v2 ; during this process the weak wave is de-
pleted.

(ii) Reconstruction of the intensity of the signal wave
through the process v2 5 v3 2 2v1 .

As can be seen from relation (7), this additional term de-
pends on the square of intensity of the gate wave, I1

2

} a10
4 , indicating directly that it represents high-order

XPM effects. From the other side the second term in re-
lation (7) is proportional to the product of two nonlineari-
ties, g2g3 } x (3)x (3). This is the usual signature of the
cascading processes that was used to introduce the termi-
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nology x (2):x (2) cascading for cascading of second-order
processes12,17 and x (3):x (3) cascading13,14 in our case.
The term that is responsible for XPM that is due to CTOP
becomes 0 when L 5 0. Within the suggestion that a20

2

! a10
2 this corresponds to the condition (Dk/g0a10

2 )
5 G1 /g0 . The applicability of relation (7) is for Dk̃
5 (Dk/g0a10

2 ) @ 1. As we shall see below, for lower val-
ues of Dk̃ (i.e., higher values of g0a10

2 L) the cascaded part
of the nonlinear phase shift is no longer proportional to
I1

2.

5. RESULTS AND DISCUSSIONS
For calculations with the more-general Eq. (8) and for nu-
merical integration of Eqs. (1) we chose a hypothetical ex-
periment for which the signal wave is the second har-
monic of the gate wave, v2 5 2v1 , the ratio of input
intensities is a20

2 /a10
2 5 0.01, and the ratio of the two non-

linear coupling coefficients is g1 /g0 5 2. The generated
third wave will have the frequency v3 5 4v1 .

The dependence of the signal wave’s nonlinear phase
shift on the normalized mismatch Dk̃ is shown in Fig. 1,
where only cascaded part of the nonlinear phase shift
Dw2,casc 5 Dw2 2 (g21a10

2 2 g22a10
2 )L is shown. The

curves are centered at k̃ 522, close to the value predicted
from relation (7). For comparison, self-phase modulation
that is due to CTOP of the fundamental wave involved in
type I third-harmonic generation14 is shown by a dashed
curve. This is the case when the two input waves are in-
distinguishable (v1 5 v2 , a10

2 5 a20
2 ). It can be seen

that the effect of XPM that is due to cascading is very
strong in comparison with the effect of self-phase modu-
lation that is due to x (3):x (3) cascading and comparable
with the XPM that is due to natural x (3) of the medium
that is equal to g21a10

2 L. Figure 1 demonstrates the good

agreement between numerical results and the analytical
formula obtained with the low-depletion approach.

In Fig. 2 the total nonlinear phase shift (NPS) and in-
tensity of the signal wave are shown as functions of the
normalized input intensity g0a10

2 L. The parameter is
the normalized mismatch DkL. The dotted line repre-
sents the NPS that is due to pure, single-step XPM. The
figure clearly shows that by using CTOP one can double
or substantially reduce the XPM effect, depending on the
mismatch DkL. We recall that the magnitude of the self-
phase modulation that is due to CTOP reaches a maxi-
mum of 30% of the self-phase modulation caused by Kerr
nonlinearity of the medium.14 The 2p jumps in the
curves correspond to the points where the parameter Dk̃
5 (Dk/g0a10

2 ) crosses the value 22. From the figure it

Fig. 1. Cascaded NPS Dw2,casc as a function of the normalized
mismatch Dk̃ for several values of the normalized gate intensity
g0a10

2 L. Solid curves, numerical solution of Eqs. (1); dotted
curves, analytical solution obtained from Eq. (8). The ratio of
the signal and the gate input intensities is a20

2 /a10
2 5 0.01.

Dashed curve, NPS that is due to CTOP when v1 5 v2 and
a10

2 5 a20
2 (this curve is reproduced from Ref. 14).

Fig. 2. Variation of (a) total NPS Dw2 and (b) signal intensity
transmittance a2

2/a20
2 with the normalized gate intensity. The

parameter is the mismatch DkL. Dotted line, NPS that is due
to pure XPM. The ratio of the signal and gate input intensities
is a20

2 /a10
2 5 0.01.
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can also be seen that for higher values of input intensity
when Dk̃ , 1 the dependence of the NPS on intensity is
no longer quadratic with respect to the intensity of the
gate wave. So the effect of XPM that is due to cascading
can be considered a result of effective quintic nonlinearity
only for low input gate intensities Dk̃ . 1. Figure 2(b)
reveals that the strong XPM effect is accompanied by pe-
riodic depletion and reconstruction of the signal wave.
To avoid the losses for the signal wave one should work at
the points of full reconstruction of the signal wave.

Significant XPM owing to cascading can be observed at
a normalized input intensity as low as g0a10

2 L 5 1, which
corresponds to I1 ' 23 MW/cm2 if one takes as the me-
dium 1-cm long p-toluene sulfonate (PTS),18,19 l1
5 2.62 mm for the gate wavelength, and l2 5 1.31 mm
for the signal wavelength. These levels of power density
can easily be achieved with many pulse sources. We took
the crystal PTS for this estimation because it has the
largest known cubic nonlinearity [x (3) 5 1.6 3 10210 esu
(Ref. 18)] and is transparent for all interacting waves
when the gate wave is at l1 5 2.62 mm. Reference 18 re-
ports third-harmonic generation in PTS of a fundamental
beam at this wavelength and strong four-wave paramet-
ric amplification. The lack of published data for the dis-
persion of the refractive index of this crystal does not al-
low us to predict possible phase matching, but judging
from its very high value of birefringence, nzz 2 nxx
5 0.3,18 it is extremely likely that PTS permits birefrin-
gent phase matching.

Another medium suitable for observation of cascaded
XPM is lead molybdate crystal (PbMoO4). This crystal
has a relatively high third-order susceptibility, xxxxx

(3)

3 (PbMoO4) 5 1.35xxxxx
(3) (CS2),

20,21 and a dispersion of
the refractive index22 such that phase matching is pos-
sible not only for four-wave upconversion (v1 , v1 , 2v1 ,
4v1) with l1 5 2.62 mm but also for another type of four-
wave interaction for which all three input waves have the
same frequency, but the polarization of the weak signal
wave is perpendicular to that of the gate wave. The lat-
ter interaction is usually called type II third-harmonic
generation and, as we have already mentioned, is also de-
scribed by Eqs. (1).

We used lead molybdate crystal to calculate the rela-
tive magnitude of the wave-vector mismatches for differ-
ent four-wave interactions when one of the processes is
phase matched. The exact phase-matching angle for the
process considered by us, k4v

(e) 5 2k1v
(o) 1 k2v

(o) , is u
5 62.06°. The mismatches for the different types of in-
teraction are shown in Table 1. The processes with the
high-value mismatches will be inefficient, and for this
reason they have not been included in Eqs. (1).

For media that do not possess the necessary birefrin-
gence for angle-tuning phase matching, the so called

quasi-phase-matching technique23 can be applied. Re-
cently this method was further developed, and it now can
be applied for achieving exact or near phase matching for
four-wave interactions in centrosymmetric media.24,25

The authors of Ref. 24 used a multilayer stack made from
glass coverslips covered with highly nonlinear film to ob-
tain third-harmonic generation from a radiation at 1.542
mm. The second type of quasi-phase-matching technique
that is suitable to be applied for centrosymmetric media
uses spatial periodic modulation of the fundamental wave
intensity along the propagation direction without artifi-
cial modulation of the nonlinear optical properties.25

Another way to achieve near phase matching in cen-
trosymmetric media is to use mixtures of gases26 or
solvents.27,28

6. CONCLUSION
In conclusion, we have described a new type of cross-
phase matching that is due to cascaded third-order pro-
cesses in media with inversion centers. This way to gen-
erate an induced nonlinear phase shift is a high-order
analog to the induced nonlinear phase shift that is due to
the second-order cascading9–12 observed during sum-
frequency mixing interactions in noncentrosymmetric me-
dia. The results presented here confirm that the process
of generating a NPS in nondegenerate frequency mixing
interactions is more efficient than the interactions that
use type I harmonic generation, i.e., when the input
waves are indistinguishable.

We believe that the strong non-Kerr XPM effect de-
scribed in this paper can play an important role in ana-
lyzing the existence and stability of bright and dark soli-
tary waves supported by the process of nearly phase-
matched sum-frequency generation, similarly as for the
case of nearly phase-matched third-harmonic genera-
tion.29,30
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