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Abstraet. We show that using the approximation of fixed 
intensity analytical formulae, describing the process of 
induced phase modulation for the beams involved in sec- 
ond-order nonlinear optical processes can be derived. 
Expressions that allow the optimization of the phase shifts 
experienced by the fundamental and generated waves are 
presented for nonlinear quadratic processes, second-har- 
monic generation and sum-frequency mixing. In the case 
of seeding at the generated wavelength, the phase shift of 
the fundamental wave is due to two interactions: (i) a cubic 
one, based on coupled second-order processes (cascade 
cubic nonlinearity) and (ii) single quadratic interaction 
with participation of the seeding wave. By comparison 
with the exact numerical solution, we defined the input 
parameters of the beams for which this analytical ap- 
proach is valid. It is shown that phase shifts exceeding z/2 
can be correctly predicted using the expressions obtained. 

PACS: 42.65 

The effect of strong self- and cross-phase modulation of 
pump waves in the second-order nonlinear processes has 
been studied extensively in recent years for the case of 
Second-Harmonic Generation (SHG) [-1-3], sum-fre- 
quency mixing [4 8] and parametric processes [1, 9]. The 
main reason for this interest is connected with the pros- 
pects of using this type of phase modulation for construc- 
tion of all-optical switching and processing devices 
[,10-12]. As noted in [,11], the presence of weak coherent 
seeding at the wavelength of the generated wave offer new 
ways to control both amplitude and phase modulation of 
the beams at the output of the nonlinear media. Addition- 
ally, the attention to this effect arises from the fact that for 
many experiments it is necessary to control all the para- 
meters involved in the nonlinear process waves. And 
finally, as suggested in [2], this effect of self- and cross- 
phase modulation of the beams in a quadratic nonlinear 
medium can be used for measurement of second-order 
susceptibilities. 

For  theoritical description of the effect of self- and 
cross-phase modulations of the beams in a non-cen- 
trosymmetric medium, most of the groups have used nu- 
merical approach [1-6, 10, 11] or expressions that include 
Jacobi integrals [12-14], that also have to be solved 
numerically. In [2, 4, 9], an analytical expression that uses 
approximation valid for low conversion coefficients and 
for high values of wave vector mismatch have been used. 
As it is seen in Fig. 1, this analytical approach (shown 
with dashed line) cannot be used for description of the 
fundamental waves phase modulation at low values of the 
mismatch. Approximations, assuming no depletion for the 
fundamental waves, are considered in [3, 8, 15] for the 
case of no generated wave seeding. The case of non-zero 
input for the generated wave have been treated only 
numerically [6, 11, 16]. 
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Fig. 1. Output phase shift of wave "1" as a function of the phase 
mismatch AkL for the case of zero seeding (a3o = 0), ratio of the 
intensities 11/12 = 0.2 and ratio of the length of the crystal to the 
nonlinear interacting length L/LNL = a[a2o ]L = 0.6. Dashed line is 
the analytical solution obtained with approximation used in [2, 4]. 
Solid line marked with trianoles is the numerical solution of system 
(2). Solid line alone represents the analytical solution (9) derived in 
this work. 
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The approach of fixed intensity approximation in non- 
linear optics was developed by Tagiev and Chirkin [17] 
for description of type I SHG process. This approxima- 
tion for description of nonlinear optical wave interactions 
suggests no depletion for the intensity of the fundamental 
waves but a possible change of their phases. It is shown 
there that fixed intensity approximation is valid for higher 
power levels than the approximation of fixed amplitude. 
Here, we extend the approach of fixed intensity approxi- 
mation over the cases of type II SHG and sum-frequency 
mixing. The case of non-zero input for the generated ware 
is considered too. Analytical formulae that describe the 
phase shifts experienced by all three interacting waves are 
presented 

1. Theoritieal analysis 

We start our investigation of the process of sum-frequency 
mixing co 3 = co2 + col in nonlinear crystal (NLC) with 
length L. We assume that the three interacting fields are 
linearly polarized plane waves. The total electric field can 
be written as 

1 
E(z,t) = ~ ~, ejAj(z) exp I l ( c o / -  kjz)] + c.c., (1) 

where j = 1, 2, 3; At(z) are the complex amplitude which 
incorporate both the real amplitude and the phase of the 
'~/" wave: Aj ( z )=  aj(z) exp[icpj(z)]; k~ = (2~/2j)nj and coj 
the corresponding propagating constants and frequencies; 
el, e2, e3 the polarization unit vectors of the three waves. 
In our investigations only second-order nonlinear pro- 
cesses are taken into account. The reduced amplitude 
equations in the slowly varying envelope approximation, 
with assumption of zero absorption for all interacting 
waves, have the following form: 

dA1 

dz 
- iatA3A* exp( - iAkz), 

dA2 

dz 
- -  - -  i 0 . 2 A 3 A  ~ exp( - iAkz), (2) 

dA3 
dz 

- i0.3A1Az exp(iAkz), 

where the subscripts "1" and "2" denote the fundamental 
waves and the subscript "3" denotes the generated wave. 
The wave vector mismatch is A K  = k3 - k2 - k» Nonlin- 
ear coupling coefficients aa, 0.2, 0-3 include the convolution 
of second-order susceptibility tensor d (2) = ~((2) /2  with the 
polarization unit vectors 

27~ 
aj = 2jrljdeff (j = 1, 2, 3) 

with 

d e f f  = (el " d ( 2 ) : e 2 e 3 )  = ( e 2 " d ( 2 ) : e l e 3 )  = ( e 3 " d ( 2 ) : e l e 2 ) .  

The same equations describe the process of type II SHG. 
For  this case, A 3 is the second-harmonic field complex 

amplitude, and A» A2 are the complex amplitudes of the 
two ortogonally polarized input waves. 

Following the method used in [-15], we obtain for the 
complex amplitude of the generated wave: 

A3(z ) a3aloa20 • ~~o - -  e ~ ( ~  - + ~ß3o) 

A 

~I~~cos(;)-i,2e'~~o + RA k) sm 

(3) 
where the following notation have been used: alo, az0, a30, 
CPlo, ~020, (P30 are input amplitudes and phases of the 
three beams at z = 0, Apo = qOao + q)20 - q%0, 
A = A,,/-Ä-E+ 4S, S = «3(a2a20 + ala20), and R = 
a30/(a3aloa20). 

For the case of a30 = 0 the amplitude and the phase 
are 

a3(z) = 0-3 aaoa20z sinc(½Az), (4) 

rc Akz 
~o3(z) = ~Olo + ~O2o - ~ + ~ -  (5) 

For the case of a30 ¢ 0, after some transformation of (3), 
we obtain 

a2(z ) = a3a a2o {[-4 + R 2 A k  2 -}- 4RAk  

• 2 AZ 

+ 2RA sin(A (po) sin (Az)}, (6) 

Akz 2 cos(A(po) + RAk 
~o3(z) = ~ -  + P3o - arctan 

2 sin(AqOo) + RA cot(Az/2) 

(7) 
The system (2) which is written for the complex ampli- 
tudes can be reduced to the differential equation system 
for the phases of the three interacting waves: 

dqoa a3a2 
dZ 0"1 COS[-((~03 - -  ~9a - -  @ 2  - -  Akz)], 

a l  

d(p2 a3aa 
dz 0"2 C0S[-((4)  3 - -  (~01 - -  (/0 2 - -  zJkz)], ( 8 )  

a 2  

d~o3 ala2 
dz a3 cos[(cp3 - qo~ - o2 - Akz)]. 

a3 

With known z-dependence for the amplitude and phase of 
the generated wave, the system (8) can be integrated ana- 
lytically with the same assumption for non-depleting 
intensity for the fundamental waves. As a result, the phase 
shift Acpl = (pl(L) - ~Ozo of the fundamental wave "1" at 
the output (z = L) of the nonlinear media is 

0.a 0.3a20AkL { 4 
A q o  a - Ä ~  [ 1  - S R  2 4- RAk  cos(Aqoo)] 

x [1 - sinc(AL)] + RA sin(Aqoo) 1-1 
cos(AL) 

AL 

cott~~ot]}. 19t 
Ak 
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For  many practical cases it is necessary to work at rela- 
tively high values of the mismatch (AkL > 3). In this case 
we can suggest that 4S/Ak2« 1 and (9) is simplified to 

A (Dl = '0-10-3 a~oL[ 1 - sinc(A kL)] + 0-1 a2o a3o [sin(A q~o) 
Ak Ak alo 

- sin(AkL + Aq00)J. (10) 

Two terms are responsible for the phase shift of the funda- 
mental ware in the case of seeding at generated 
wavelength: (i) a cubic one, based on coupled second- 
order processes (cascade cubic nonlinearity), that is the 
same as for zero seeding [3, 8, 15] and (il) single quadratic 
interaction with participlation of the seeding wave. 

2. Comparison with the numerical results and discussions 

For evaluating the limits of application of the above 
derived formulae we solved system (2) numerically by the 
Runge-Kut ta  method. Type II second-harmonic genera- 
tion was chosen for consideration, i.e., we chose a3 - 2o-1, 
0-1 - 0-2. First we compare the analytical solution of the 
system (2), obtained by the approximation used in [-2, 4J 
and our analytical solution, with the numerical solution 
for the case of zero input for the generated wave (a3o = 0), 
ratio of the intensities of the two (signal and pump) 
fundamental waves 11/12 = 0.2 and ratio of the length of 
the crystal to the nonlinear interacting length 
L/LNL = 0-la2olL = 0.6. In Fig. 1, the curves for the phase 
shifts Aqo~ as a function of normalized phase mismatch 
AkL obtained by these three approaches are shown. It is 
seen that the approximation of fixed intensity used here is 
much closer to the exact numerical solution (marked solid 
line) than the previously used approximation (dashed 
line), even for these relatively high values of input inten- 
sities that correspond to 60% conversion coefficient for 
the generated wave with respect to the signal wave 1 at 
optimal mismatch A kL. 

Another advantage of the obtained formula is that it 
describes SHG and sum-frequency mixing processes in the 
presence of seeding. In Fig. 2, the phase shiftA(pl vs AkL 
for two different values of the input phase difference 
Apo:Apo = 0,~ is shown. The seeding intensity is 10 times 
less than the weak signal intensity. Input intensity of the 
strong (pump) wave and the signal wave are the same as 
used for Fig. 1. Dashed line represents the numerical 
calculations for Acpo = ~ input phase difference. "AkL" 
dependencies for the signal wave phase shift have similar 
shapes as in the case of no seeding, with this difference that 
the center of the curve are positioned at different places at 
A kL axis depending on the input phase difference and the 
seeding intensity, when A Cpo is different from ~z/2 and 3~/2. 
The curves with Apo = zc and Acpo = 0 are symmetrically 
positioned with respect to the point "AkL = 0". 

The obtained formulae and Fig. 2 clearly show that 
the presence of seeding helps to obtain phase shift of the 
fundamental waves at exact phase matching condition 
(Ak = 0). In this case the change of the magnitude of the 
shift can be controlled not only by the amplitude of the 
pump fundamental wave but also by the input phase of 
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Fig. 2. Phase shift A~ol as a function of AkL for two different values 
of the input phase difference A~oo: A~o0 = 0,m Seeding intensity 
I3o = 0.112o. Input intensities of the fundamental waves are the same 
as used for Fig..1 
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Fig. 3. 3D graph of the output phase shift of the signal wave as 
a function of the input phase difference Apo and the mismatch AkL. 
Input intensities of the three interacting waves are the same as for 
Fig. 2 

the seeding wave. 

Aqol(L) = - ala3°a2°L cos(A(po). (11) 
a l o  

The induced phase shift in this last case is due to the single 
second-order process. The sign of the shift depends on the 
sign of the second-order susceptibility tensor. 

The formulae derived here allow one to visualize 
quickly and optimize the process of phase modulation of 
the fundamental waves. As an example, Fig. 3 shows the 
phase shift gained by the signal fundamental wave in type 
II SHG with non-zero second-harmonic wave input. The 
parameters of the input waves are the same as in the case 
of Fig. 2. Maximum phase shift is achieved for normalized 
wave vector mismatch AkL -- 2 and input phase difference 

4 
A~oo = qolo + qO2o - ~O3o = ~ ~. 
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Fig. 4. Comparison of the numerical (dashed line) and analytical 
(solid line) approach: output phase shift of signal wave "1" as a func- 
tion of the normalized amplitude of the pump wave crazo/Ak for 
three different values of the mismatch AkL 

In  Fig. 4, the analytical dependencies of the phase shift of 
the signal wave as a function of the amplitude of the p u m p  
wave normalized to the Ak input are compared  for differ- 
ent mismatches AkL = 1; 3; 10 with the exact numerical 
calculations. Analytical curves were obtained with for- 
mula (10). The analytical curves are close to the numerical 
ones  up to p u m p  intensities corresponding to 
(ala2o/Ak) = 0.5. It  is seen that  at power levels where 
analytical formulae work well, phase shifts exceeding ~z/2 
can be obtained. This level of shifts is sufficient to switch 
all-optical switching devices based on symmetrical  M a c h  
Zehnder  interferometer [13]. 

3. Conclusion 

We have shown that  approximat ion  of fixed intensity can 
be used to describe analytically the process of low power 
self- and cross-phase modula t ion  of the waves involved in 
quadrat ic  nonlinear  optical processes as S H G  and sum- 
frequency mixing. The criteria for the validity of the ap- 
proximat ion of fixed intensity is that  the ratio 4S/Ak 2 be 
not  more  than 2. We intend to use these formulae for 

a description of the process of mode- locking with the 
so-called nonlinear doubl ing mirror  [18] used recently for 
mode- looking  C W  pumped  N d : Y A G  laser [19]. In- 
tracavity power level in C W  pumped  solid state lasers is 
low enough, so the expressions described here are valid. 
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