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We consider nonlinear selective reflection on the interface between dielectric media and dilute vapors of
three-level atoms. Assuming a pump-probe scheme with cascade-type excitation, we study the modification
DR of the reflection coefficient of the probe induced by the presence of the pump. We extend previous
calculations of the frequency spectrum ofDR made for low probe power to the case of arbitrary probe power.
One then obtains a strong resonance which has already been observed experimentally. Moreover, for the
two-photon resonance present in the low-intensity spectrum, a power splitting can be predicted with increasing
intensity @S1050-2947~96!06205-1#

PACS number~s!: 42.50.2p, 32.80.2t, 34.90.1q

I. INTRODUCTION

Selective reflection at the interface between dielectric me-
dia and dilute atomic vapors has attracted the attention of
several authors in recent years. This is because the frequency
profile of the resonant reflectivity signal yields information
on the behavior of excited-state atoms in the vicinity of a
dielectric surface. As has been pointed out in an early paper
@1#, atoms are in a transient regime after deexcitation at the
surface, and this behavior creates spatial dispersion leading
to spectral narrowing of the selective reflection profile@2#.

Theoretical studies devoted to this effect in two-level at-
oms have been carried out at both low and saturating inten-
sities for normal incidence, as well as for arbitrary incidence
angles@3,4#. An interesting aspect is introduced by consid-
ering the case of a pump-probe scheme@5#, where one stud-
ies the modification of the reflectivity spectrum of a weak
probe beam induced by the presence of an intense pump
beam, since in this case additional effects such as saturation
narrowing and extra resonances are observed. Finally long-
range atom-surface interactions can also play a part in selec-
tive reflection spectroscopy under special conditions of ob-
servation@6,7#.

More recently, studies concerning the pump-probe
scheme have been extended to the case of three-level atoms
where experimental results are also available@8,9#. In a pre-
vious paper@10# referred to as I, we have studied nonlinear
selective reflection by considering a three-level scheme with
two beams in normal incidence and with frequencies tuned
respectively to the lower and the upper transition, giving rise
to a cascade-type excitation. Following the suggestions made
in @1#, we have assumed that atoms moving towards the sur-
face are in a stationary regime, whereas those leaving the
surface are in a transient one.

In I we assumed that one of the transitions is driven by a
strong field with fixed frequency detuning~the pump!, and
that the other transition is frequency scanned by a weak field
~the probe or signal!. We have studied two cases with the
pump driving either the lower or the upper transition. As the

reflection coefficient of the probe is modified by the presence
of the pump, the quantity of interest is this modification ex-
pressed as a function of the probe frequency detuning. Ex-
perimentally this quantity can be separated from ordinary
two-level reflectivity by amplitude modulation techniques.

In I we introduced an expansion of the corresponding ex-
pression with respect to both the pump and the probe field
intensity, and considered only the lowest-order nonvanishing
terms. In this paper we extend the calculations to all orders
in the intensities of both fields in the case where the pump is
tuned to the upper transition, and we consider more specifi-
cally probe saturation effects on these spectra.

II. COUPLED DENSITY-MATRIX EQUATIONS

Given a system as shown in Fig. 1, withg, r , and e,
respectively, labeling the lower, intermediate and upper lev-
els, we consider the case where the pump is tuned to the
vicinity of the transitionr→e, whereas the probe is scanning
the transitiong→r . In I the state of an atom was described
by a reduced density matrixs(z,vz) depending on the nor-
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FIG. 1. Cascade three-level system. The pump beam with fre-
quencyvp is resonant with the upper transition~resonance fre-
quencyv2!, while the probe beam with frequencyvs is resonant
with the lower transition~resonance frequencyv1!.
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mal distancez and on the normal velocity componentvz of
the atom with respect to the dielectric surface. We have in-
troduced the Laplace-transformed quantity

ŝ~p,vz!5E
0

`

dz e2pzs~z,vz!, ~1!

together with its stationary limit defined as

s̄ ~vz!5 lim
p→01

pŝ~p,vz!, ~2!

Let srg be the matrix element representing the coherence
between levelsr and g. Then the selective reflection spec-
trum of the probe beam is shown to be proportional to the
integral expression

I5Re E
2`

1`

dvzW~vz!@Q~2vz!s̄ rg~vz!22iksQ~vz!

3ŝ rg~22iks ,vz!#, ~3!

whereks is the wave vector of the probe beam.W(vz) is a
normalized Maxwell-Boltzmann distribution function and
Q(2vz) andQ(vz) are Heaviside functions selecting atoms
with negative and positive velocity components, respec-
tively. Thus for atoms moving toward the surface only the
stationary value ofsrg is relevant, whereas for atoms leaving
the surface its Laplace-transformed quantity~1! with
p522iks is needed.

In I, for matrix elements ofŝ the following set of coupled
equations were derived:

vzpŝee5
iVp

2
~ ŝ re2ŝer!2A2ŝee,

vzpŝ rr5
iVp

2
~ ŝer2ŝ re!1

iVs

2
~ ŝgr2ŝ rg!2A1ŝ rr

1A2ŝee,

vzpŝgg5
iVs

2
~ ŝ rg2ŝgr!1A1ŝ rr1vz ,

~4!

vzpŝeg5 i D̃egŝeg1
iVp

2
ŝ rg2

iVs

2
ŝer2

1
2A2ŝeg ,

vzpŝer5 i D̃erŝer1
iVp

2
~ ŝ rr2ŝee!2

iVs

2
ŝeg

2 1
2 ~A11A2!ŝer ,

vzpŝ rg5 i D̃rgŝ rg1
iVp

2
ŝeg1

iVs

2
~ ŝgg2ŝ rr !2 1

2A1ŝ rg ,

which has to be solved forŝ rg . HereVp andVs designate
Rabi frequencies associated with the pump and the probe
~signal! field, respectively, and defined in the usual way as
the scalar products of these fields with the corresponding
dipole transition elements.~For convenience we set\51.! A1
andA2 are constants of natural decay referring to the transi-
tions r→g and e→r , respectively. Furthermore we intro-

duced Doppler-shifted frequency detunings defined in terms
of the incident frequenciesvp andvs and of the transition
frequenciesver andvrg by the relations

D̃rg5vs2v rg2ksvz5Ds2ksvz ,
~5!

D̃er5vp2ver2kpvz5Dp2kpvz

D̃eg5D̃rg1D̃er5Dp1Ds2~kp1ks!vz ,

Assuming copropagating geometry, we setks ,kp.0.
Note that the second equation in~4! implicitly contains

the normalization condition

ŝgg1ŝee1ŝ rr5
1

p
. ~6!

III. OUTLINE OF THE RESOLUTION METHOD

The method consists of eliminating all coherences from
the set of Eqs.~4!. For the two populationsŝgg andŝee one
then obtains a set of two equations which constitutes virtu-
ally an analytical solution of our coupled equations. In this
way the numerical evaluation of the unknown quantities is
considerably simplified as compared with a numerical reso-
lution of the initial set of six equations.

Consider first the last three of Eqs.~4!. From these we
eliminateŝeg and, after a somewhat lengthy but straightfor-
ward calculation obtain the following expressions:

ŝer5 i
VpVs

2

8DDrgDer

1

p
1

iVp

2Der
F12

Vs
2

4D S 2

Drg
1

1

Der
D G ŝ rr

2
iVp

2Der
F11

Vs
2

4D S 1

Drg
2

1

Der
D G ŝee,

~7!

ŝ rg5
iVs

2Drg
S 12

Vp
2

4DrgD
D 1

p

1
iVs

2Drg
F221

Vp
2

4D S 2

Drg
1

1

Der
D G ŝ rr

1
iVs

2Drg
F211

Vp
2

4D S 1

Drg
2

1

Der
D G ŝee,

where we have set

Der5vzp2 i D̃er1
1
2 ~A11A2!,

Drg5vzp2 i D̃rg1 1
2A1 ,

~8!
Deg5vzp2 i D̃eg1

1
2A2

D5Deg1
Vp

2

4Drg
1

Vs
2

4Der
.

Note that ŝgg has also been eliminated by means of the
normalization condition~6!.

To complete the process of eliminating the coherences,
the first and the third of Eqs.~4! can now be used. For this
purpose, in addition to the quantitiesŝer and ŝ rg given by
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Eqs. ~7! we also need the quantitiesŝ re and ŝgr , which in
the case of nonrealp are not the complex conjugates of the
former. Neither areŝee and ŝ rr real quantities in this case,
i.e., in contrast tos, ŝ is not Hermitian. However, the re-
quired expressions forŝer andŝ rg are just the complex con-
jugates of Eqs.~7! established formally by treatingp as if it
were a real quantity. This is because of the analyticity of
these expressions, which implies that if they are valid for real
p then they are also valid for anyp.

Thus we write Eq.~7! in the form

ŝer5a1

1

p
1a2ŝ rr1a3ŝee,

~9!

ŝ rg5b1

1

p
1b2ŝ rr1b3ŝee;

then we have

ŝ re5a1
† 1

p
1a2

†ŝ rr1a3
†ŝee,

~10!

ŝgr5b1
† 1

p
1b2

†ŝ rr1b3
†ŝee,

where the quantitiesa1
†, etc. are obtained froma1, etc. by

taking complex conjugates withp real, although in the endp
is allowed to be nonreal so that in facta1

† is different from
a1* . By substituting expressions~9! and ~10! into the first
and the third of Eqs.~4!, with ŝgg replaced again by means
of ~6!, we obtain the following set of two equations for the
two diagonal elementsŝ rr and ŝee:

iVp

2
~a22a2

†!ŝ rr1F iVp

2
~a32a3

†!1vzp1A2G ŝee

52
iVp

2
~a12a1

†!
1

p
, ~11!

F iVs

2
~b22b2

†!1vzp1A1G ŝ rr1F iVs

2
~b32b3

†!1vzpG ŝee

52
iVs

2
~b12b1

†!
1

p
,

where the coefficientsa1, etc. are obtained by identifying
Eqs. ~9! and ~7! with p522iks , which is the argument of
ŝ rg in the general expression~3!.

From these equations one can obtain explicit expressions
for the quantitiesŝgg and ŝee which could be evaluated di-
rectly. However, since these quantities are complex, in Eq.
~11! we chose to sort out real and imaginary parts. Solving
the resulting set of four real equations is equivalent, as far as
computing is concerned, with evaluating the corresponding
complex quantities from their analytic expressions numeri-
cally.

The results forŝ rr and ŝee are then substituted into the
second of Eqs.~9! to yield the required matrix elementŝ rg
which enters expression~3! with its imaginary part. This
general expression~3! also involves the stationary values̄ rg .
According to the general definition~2!, we introduce the
quantities

s̄ rr5 lim
p→01

pŝ rr , s̄ee5 lim
p→01

pŝee,

which can be determined by multiplying Eqs.~11! by p, and
taking the limitp→01. Sincep is now real,a1 anda1

† are
complex conjugate, so that we havea12a1

†52a 1
I ~0! with the

superscriptI designating the imaginary part, and withp set
equal to 0.

Our Eqs.~11! then reduce to the form

2Vpa2
I ~0!s̄ rr1@2Vpa3

I ~0!1A2#s̄ee5Vpa1
I ~0!,

@2Vsb2
I ~0!1A1#s̄ rr2Vsb3

I ~0!s̄ee5Vsb1
I ~0!. ~12!

Because of the hermiticity ofs̄ these equations contain only
real quantities. After having solved the equations fors̄ rr and

FIG. 2. Selective reflection
relative amplitudeIr vs probe de-
tuning for negative pump detuning
and for different values of probe
Rabi frequency. The following
parameters have been taken:
r50.7, A15A250.05kv0, Dp5
20.5kv0, and Vp50.01kv0,
wherek 5(kk1kp)/2.
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s̄ee, we calculate the required matrix elements̄ rg from the
second of Eqs.~9!, which now takes the form

s̄rg5b1~0!1b2~0!s̄ rr1b3~0!s̄ee. ~13!

In fact only the real part of this expression, which is obtained
in ~13! by replacing the quantitiesb1, b2, andb3 by their
real parts, enters into~3!.

Finally we indicate the particular form taken by expres-
sions ~8! which determine the values of the coefficients in
Eqs.~11!, ~12!, and~13!. With the argumentp522iks rel-
evant for the matrixŝ, in the transient case we have

Der52 iDp1 i ~kp22ks!vz1
1
2 ~A11A2!,

~14!
Drg52 iDs2 iksvz1

1
2A1 ,

Deg52 i ~Dp1Ds!1 i ~kp2ks!vz1
1
2A2 ,

whereas withp50 the values for the stationary case are

Der52 iDp1 ikpvz1
1
2 ~A11A2!

Drg52 iDs1 iksvz1
1
2A1 , ~15!

Deg52 i ~Dp1Ds!1 i ~kp1ks!vz1
1
2A2 .

IV. RESULTS AND DISCUSSION

According to I the modification of the reflection coeffi-
cientR of the probe beam, due to the presence of the pump,
is given by the expression~same units as in I!

DR5
4n~n21!

~n11!3
pNVs

2uEsu2
I, ~16!

wheren andN, respectively, are the refraction index of the
dielectric and the number density of the atoms. Here we
consider relative values ofDR and therefore disregard the
constant factor in the above expression ofDR, and evaluate
only the quantityI as defined by Eq.~3!. We have computed
this quantity by numerical integration and plotted the result

FIG. 3. Selective reflection
relative amplitudeIr vs probe de-
tuning for negative pump detun-
ing. The following parameters
have been taken:A150.1kv0 ,
A250.01kv0 , Dp520.2kv0 ,
Vs50.2kv0, and Vp50.01kv0 ,
where k5(ks1kp)/2, and r50.7
for ~a! andr50.93 for ~b!.
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as function of the probe frequency for different fixed values
of the pump frequency. We recall that in I three cases were
considered:~i! the pump exactly on resonance,~ii ! blue de-
tuning of the pump by an amountkv0, and~iii ! red detuning
of the pump by an amountkv0 with k5(ks1kp)/2. The
analysis was adapted to the case of the transitions
6S1/2→6P3/2 ~852 nm! and 6P3/2→8D5/2 ~621 nm! in ce-
sium, for which experimental data are available@8#. Accord-
ingly, for the ratioks/kp the value of 0.7 has been taken.

By applying the method presented in this paper, we ex-
tended these calculations to the case of high probe power
where additional effects can be expected. One then notices
that the most interesting case is that of negative frequency
detuningDp,0, because in this case extra resonances appear
in the spectrum at saturating probe power.

Let us first recall that, as shown in I, at low intensities
only two resonances are present forDp,0: one with a dis-
persion like shape aroundDs50, and one narrow asymmetri-
cal peak at positive frequencyDs52Dp .

~i! At high probe intensities an extra resonance appears
around the valueDs5(ks/kp)Dp . Experimental observation
of this resonance has been reported in@9# In Fig. 2 we com-
pare the profile obtained in this case with the low-intensity
one. In this comparison we eliminate a trivial factorVsV p

2

by considering instead ofF the reduced quantity
Ir5I/(VsV p

2) which is intensity independent in the low-
intensity case. As can be seen, the saturation-induced reso-
nance has a dispersionlike shape, and its width is propor-
tional to the probe Rabi frequencyVs . It corresponds to
selection by the pump beam of atoms moving towards the
surface, i.e., to atoms which are in steady-state interaction
with the light beams. The resonance appears when the probe
intensity is high enough to make the population of the inter-
mediate level non-negligible.

~ii ! Another effect is the modification of the resonance at
Ds52Dp , which in I was attributed to two-photon transi-

tions in atoms with low normal velocity. As seen in Fig. 3~a!
this resonance is no longer present as an independent peak,
but manifests itself as a sudden bend on the high-frequency
side of the central structure which now is strongly broadened
by the intensity effect. This interpretation implies that the
resonance is shifted toward the red with respect to the low-
intensity value. Moreover an additional peak appears at a
position shifted to the blue with respect to the original reso-
nance as shown in Fig. 3~b!. @In Fig. 3~a! this peak is not
visible simply because its intensity is to weak.# These fea-
tures can be viewed as a splitting of the original two-photon
resonance under the influence of high probe power.

V. CONCLUSION

We have shown that due to saturating probe power addi-
tional resonances appear in the nonlinear reflection spectrum
of a three-level cascade system. In particular the dispersion
structure at frequencyDs52Dp with Dp,0 observed in the
low-intensity spectrum appears to be split into two compo-
nents at high intensity. This effect, which is partially masked
by the broad structure of the central resonance, could be
made more clearly visible if instead of the curves presented
here their derivatives were considered. Experimentally this
can be achieved by using frequency modulation rather than
amplitude modulation as assumed in this paper@6#. Prelimi-
nary results on the subject of frequency modulation spectra
are reported elsewhere@9#.
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